ادبیات پژوهشی پیرامون شهر سالم: روش‌شناسی مبتنی بر تحلیل شبکه‌ای دانش

نوع مقاله : پژوهشی - بنیادی

نویسندگان

گروه جغرافیا و برنامه‌ریزی شهری-روستایی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

این پژوهش با هدف مرور تاریخی ادبیات علمی مرتبط با مفهوم "شهر سالم" انجام‌شده است. اطلاعات مورداستفاده در این مطالعه از تحلیل 1674 سند علمی به زبان انگلیسی، منتشرشده در بازه زمانی 1895 تا 2025، استخراج‌شده است. برای جمع‌آوری داده‌ها، از پایگاه علم‌سنجی اسکوپوس که یکی از معتبرترین و جامع‌ترین منابع علمی است، استفاده‌شده است. از نظر روش‌شناسی، این مطالعه از نوع مرور تاریخی مبتنی بر تحلیل شبکه‌ای دانش است. روش‌های به‌کاررفته شامل فنون نقشه‌کشی و بصری سازی داده‌های علم‌سنجی است که از سال 2010 وارد حوزه مطالعات علمی شده‌اند. این روش سه رویکرد اصلی شامل تحلیل شبکه، همپوشانی و چگالی را در برمی‌گیرد. در این پژوهش، واژگان کلیدی "شهر سالم"، "شهرهای سالم" و "شهر و سلامت" در عنوان، کلمات کلیدی و چکیده اسناد جست‌وجو شده‌اند. تحلیل‌ها در محورهای مختلفی شامل مناطق جغرافیایی، روندهای زمانی انتشار، همکاری نویسندگان، نوع اسناد، هم ارجاعی، هم واژگانی، رشته‌های علمی و مراکز پژوهشی فعال در حوزه "شهر سالم" انجام‌شده است. نرم‌افزار VOSviewer به‌عنوان ابزار اصلی برای بصری سازی و تحلیل شبکه‌ای دانش مورداستفاده قرارگرفته است. یافته‌ها نشان می‌دهند که دانش مرتبط با "شهر سالم" طی دوره بررسی، خوشه‌بندی‌های مشخصی از نظر زمانی و مکانی داشته است. به‌بیان‌دیگر، کشورها، نویسندگان و واژگان کلیدی مرتبط با این مفهوم، الگوهای معناداری را به نمایش گذاشته‌اند. شناخت این الگوها می‌تواند مسیرهای جدیدی را برای پژوهشگران این حوزه هموار سازد.

کلیدواژه‌ها


عنوان مقاله [English]

Literature review on healthy cities: A methodology based on knowledge Network Analysis

نویسندگان [English]

  • Seror Abdulridha Abdulhassan
  • Alireza Mohammadi
  • Hossein Nazmfar
  • Mansour Rahmati
Department of Geography and Urban-Rural Planning, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

ABSTRACT
This study aims to conduct a historical review of the scientific literature on the concept of "Healthy City." The data utilized in this research were derived from an analysis of 1,674 scientific documents published in English between 1895 and 2025. The Scopus bibliometric database, recognized as a reliable and comprehensive scientific reference, was used to extract the data. Methodologically, this study adopts a historical literature review approach based on knowledge network analysis. The applied methods include mapping and visualization techniques derived from bibliometric studies, introduced to the scientific community in 2010. This approach encompasses three core analysis techniques: network visualization, overlap analysis, and density mapping. Keywords such as "Healthy City," "Healthy Cities," and "City and Health" were searched within the titles, keywords, and abstracts of the documents. The analyses focused on various aspects, including geographical regions, publication trends, co-authorship, document types, co-citation, co-word analysis, scientific disciplines, and research centers contributing to the "Healthy City" framework. The VOSviewer software was employed to visualize and analyze the knowledge network. The findings reveal that the knowledge related to "Healthy City" exhibits distinct temporal and spatial clustering throughout the examined period. Specifically, countries, authors, and related keywords demonstrate meaningful patterns. Understanding these patterns could open new avenues for researchers exploring this field.
Extended Abstract
Introduction
The concept of "Healthy Cities" has garnered significant attention in academic research, as urban challenges such as population growth, climate change, and public health issues have intensified. This study aims to conduct a historical review of the scientific literature related to "Healthy Cities" from 1895 to 2025, analyzing trends, clusters, and patterns in this field. By focusing on the evolution of research, key contributors, and thematic areas, the study provides insights into how the concept of a Healthy City has expanded from traditional public health concerns to interdisciplinary approaches incorporating smart technologies and sustainable urban planning. Understanding these trends is crucial for guiding future research and policy-making to effectively address urban health challenges.
 
Methodology
This study analyzed 1,674 English-language documents indexed in the Scopus database, a globally recognized scientific repository. The documents were systematically reviewed using bibliometric and network analysis techniques, which included co-occurrence, co-citation, and co-word analyses. These methods enabled the mapping and visualization of knowledge networks, revealing temporal, spatial, and thematic patterns. The software VOSviewer was used for network visualization and clustering. Keywords such as "Healthy City," "Healthy Cities," and "City and Health" were searched across document titles, abstracts, and keywords. The study also examined geographic regions, publication trends, author collaborations, document types, co-citation patterns, and key research institutions to provide a comprehensive overview of the field.
 
Results and discussion
The analysis revealed several significant findings. Research on Healthy Cities began in 1985 and has experienced notable growth, particularly since 2020. This upward trend reflects the increasing recognition of the Healthy City concept as a response to modern urban challenges, such as climate change, population growth, and public health issues. The surge in publications indicates a heightened focus on this topic within the academic community, highlighting its relevance in both research and policymaking domains.
The majority of the reviewed documents (63%) consisted of research articles published in high-impact journals, demonstrating the academic rigor and credibility of this field. These studies span various disciplines, including medical sciences, social sciences, environmental sciences, and engineering. This disciplinary diversity underscores the interdisciplinary nature of Healthy Cities research and its potential to foster collaboration among experts from diverse fields. Such an approach can provide holistic solutions to urban health challenges, integrating public health measures with urban planning, environmental management, and technological innovations. The network and density analyses revealed several prominent thematic clusters. The keywords "Healthy Cities," "health promotion," and "public health" formed the core of these clusters, interconnected with terms like "urban planning," "built environment," "urban resilience," "smart cities," and "sustainable development." These findings illustrate the dynamic and evolving nature of Healthy Cities research, which bridges traditional public health issues with modern urban strategies, such as green infrastructure and smart technologies. This blend of traditional and innovative approaches highlights the growing complexity and scope of this field. Geographically, China, the United States, the United Kingdom, and Australia were identified as the leading contributors to Healthy Cities research. This prominence reflects the strong policy frameworks and academic focus on urban health in these countries. Their research outputs and initiatives can serve as models for other nations aiming to adopt and implement Healthy Cities principles. Furthermore, the geographic distribution of research emphasizes the need for international collaboration and knowledge-sharing to ensure the equitable dissemination of benefits derived from Healthy Cities initiatives. In terms of authorship and institutional contributions, the study identified both established and emerging researchers who have significantly advanced knowledge in this domain. The network analysis of co-authorship patterns highlighted key collaborations and influential institutions, underscoring the importance of fostering strong research networks. Such networks are essential for driving innovation and addressing complex urban health challenges. Moreover, the co-citation analysis revealed distinct clusters of foundational and contemporary studies, allowing researchers to trace the evolution of key themes and methodologies over the analyzed period. The results also point to a future direction for Healthy Cities research, likely characterized by increased reliance on advanced technologies, such as artificial intelligence and smart sensors. These tools can enable more precise and efficient urban health interventions, further integrating health promotion into urban planning. The findings suggest that the future of Healthy Cities lies in combining traditional public health measures with cutting-edge technologies, fostering sustainable, resilient, and inclusive urban environments.
 
Conclusion
This study provides a comprehensive historical review of research on Healthy Cities, showcasing its interdisciplinary evolution and global significance. By mapping knowledge patterns and identifying key contributors, this study offers valuable insights for researchers and policymakers to advance the Healthy Cities agenda. The findings highlight the critical role of integrating traditional public health measures with modern urban innovations, fostering international collaboration, and leveraging technology to develop sustainable and inclusive urban health solutions. Despite its strengths, this study recognizes limitations, such as the reliance on Scopus-indexed English-language documents, which may exclude significant contributions in other languages or from less-documented regions. Future research should aim to address these gaps and explore how emerging technologies can further enhance the Healthy Cities paradigm.
 
Funding
There is no funding support.
 
Authors’ Contribution
Authors contributed equally to the conceptualization and writing of the article.
All of the authors approved the content of the manuscript and agreed on all aspects of the work declaration of competing interest none.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Healthy Cities
  • Bibliometrics
  • City and Health
  • Medical Geography
  • Environmental Pathology
  1. Aznar-Sánchez, J. A., Piquer-Rodríguez, M., Velasco-Muñoz, J. F., & Manzano-Agugliaro, F. (2019). Worldwide research trends on sustainable land use in agriculture. Land use policy, 87, 104069.‌ DOI:10.1016/j.landusepol.2019.104069.
  2. Bastin, J-FY., Finegold, C., Garcia, D., Mollicone, M., Rezende, D., Routh, C.M., Zohner, T., & Crowther, W. (2019) The global tree restoration potential. Science 365(6448), 76–79. https://doi.org/10.1126/science.aax0848.
  3. Daioglou, V., Doelman, J. C., Wicke, B., Faaij, A., & van Vuuren, D. P. (2019). Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Global Environmental Change, 54, 88-101.‌
  4. CEDEAO et FAO (2020). Diagnostic sur l’efficacité des politiques et stratégies nationales des pêches et de l’aquaculture pour la sécurité alimentaire et nutritionnelle en Afrique de l’Ouest: Etats Membres de la CEDEAO & Mauritanie. ECOWAS. https://doi.org/10.4060/cb2033fr.
  5. Cheng, P., Tang, H., Dong, Y., Liu, K., Jiang, P., & Liu, Y. (2021). Knowledge mapping of research on land use change and food security: a visual analysis using CiteSpace and VOSviewer. International Journal of Environmental Research and Public Health, 18(24), 13065.‌  https://doi.org/10.3390/ijerph182413065.
  6. Chen, C., Yu, L., & Choguill, C. L. (2020). “Dipiao”, Chinese approach to transfer of land development rights: The experiences of Chongqing. Land Use Policy, 99, 104870.‌ https://doi.org/10.1016/j.landusepol.2020.104870.
  7. Chigbu, U. E., Ntihinyurwa, P. D., de Vries, W. T., & Ngenzi, E. I. (2019). Why tenure responsive land-use planning matters: Insights for land use consolidation for food security in Rwanda. International journal of environmental research and public health, 16(8), 1354.‌  https://doi.org/10.3390/ijerph16081354.
  8. Donthu, N., Kumar, S., & Pattnaik, D. (2020). Forty-five years of Journal of Business Research: A bibliometric analysis. Journal of business research, 109, 1-14.‌ https://doi.org/10.1016/j.jbusres.2019.10.039.
  9. Fader, M., Cranmer, C., Lawford, R., & Engel-Cox, J. (2018) Toward an understanding of synergies and trade-offs between water energy and food SDG targets. Front Enviro Sci. https://doi.org/10.3389/fenvs.2018.00112.
  10. Garden, J. G., Mcalpine, C. A., Possingham, H. P., & Jones, D. N. (2007). Habitat structure is more important than vegetation composition for local‐level management of native terrestrial reptile and small mammal species living in urban remnants: A case study from Brisbane, Australia. Austral ecology, 32(6), 669-685.‌ DOI:10.1111/j.1442-9993.2007.01750.x.
  11. Gogoi, P. P., Vinoj, V., Swain, D., Roberts, G., Dash, J., & Tripathy, S. (2019). Land use and land cover change effect on surface temperature over Eastern India. Scientific reports, 9(1), 8859.‌ DOI:10.1038/s41598-019-45213-z.
  12. Huang, W., Hashimoto, S., Yoshida, T., Saito, O., & Taki, K. (2021). A nature-based approach to mitigate flood risk and improve ecosystem services in Shiga, Japan. Ecosystem Services, 50, 101309.‌ DOI:10.1016/j.ecoser.2021.101309.
  13. He, C., Okada, N., Zhang, Q., Shi, P., & Li, J. (2008). Modelling dynamic urban expansion processes incorporating a potential model with cellular automata. Landscape and urban planning, 86(1), 79-91.‌ https://doi.org/10.1016/j.landurbplan.2007.12.010.
  14. Huang, Y. (2021). Technology innovation and sustainability: Challenges and research needs. Clean Technologies and Environmental Policy, 23, 1663-1664.‌ DOI:10.1007/s10098-021-02152-6.
  15. Ickowitz, A., Powell, B., Rowland, D., Jones, A., & Sunderland, T. (2019). Agricultural intensification, dietary diversity, and markets in the global food security narrative. Global Food Security, 20, 9-16.‌ https://doi.org/10.1016/j.gfs.2018.11.002.
  16. Jiang, Y., Ritchie, B. W., & Benckendorff, P. (2019). Bibliometric visualisation: An application in tourism crisis and disaster management research. Current Issues in Tourism, 22(16), 1925-1957.‌ DOI:10.1080/13683500.2017.1408574.
  17. Long, H., Zhang, Y., Ma, L., & Tu, S. (2021). Land use transitions: Progress, challenges and prospects. Land, 10(9), 903.‌ DOI:10.3390/land10090903.
  18. Liu, Y., & Zhou, Y. (2021). Reflections on China's food security and land use policy under rapid urbanization. Land use policy, 109, 105699.‌ https://doi.org/10.1016/j.landusepol.2021.105699.
  19. López, S., Wright, C., & Costanza, P. (2017). Environmental change in the equatorial Andes: Linking climate, land use, and land cover transformations. Remote Sensing Applications: Society and Environment, 8, 291-303.‌ https://doi.org/10.1016/j.rsase.2016.11.001.
  20. Liu, L., Liu, B., Song, W., & Yu, H. (2023). The Relationship between Rural Sustainability and Land Use: A Bibliometric Review. Land, 12(8), 1617.‌ https://doi.org/10.3390/land12081617.
  21. Li, J., & Song, W. (2022). Food security review based on bibliometrics from 1991 to 2021. Foods, 11(23), 3915.‌ https://doi.org/10.3390/foods11233915.
  22. Maxwell, S., & Smith, M. (1992). Household food security: a conceptual review. Household food security: Concepts, indicators, measurements, 1, 1-72.‌ https://www.researchgate.net/publication/296706406_Household_Food_Insecurity_HFIS_Definitions_Measurements_Socio-Demographic_and_Economic_Aspects.
  23. Price, D. J. D. S. (1963). Little science, big science. Columbia university press.‌
  24. Putro, U. S., Novani, S., & Hendriadi, A. (2024, April). Reinventing sustainable food security: A problem structuring method. In AIP Conference Proceedings (Vol. 3109, No. 1). AIP Publishing.‌ https://doi.org/10.1063/5.0205420.
  25. Pradhan, P.L., Costa, D., Rybski, W., Jürgen, L., & Kropp, P. (2017) A systematic study of sustainable development goal (SDG) interactions. Earth's Future, 5(11), 1169–1179. https://doi.org/10.1002/2017EF000632.
  26. Roe, S., Streck, C., Obersteiner, M., Frank, S., Griscom, B., & Drouet, L. (2019). Contribution of the land sector to a 1.5 °C world. Nat Clim Change, 9(11), 817–828. https://doi.org/10.1038/s41558-019-0591-9.
  27. Skaf, L., Buonocore, E., Dumontet, S., Capone, R., & Franzese, P. P. (2020). Applying network analysis to explore the global scientific literature on food security. Ecological Informatics, 56, 101062.‌ https://doi.org/10.1016/j.ecoinf.2020.101062.
  28. Shan, L., Ann, T. W., & Wu, Y. (2017). Strategies for risk management in urban–rural conflict: Two case studies of land acquisition in urbanising China. Habitat international, 59, 90-100.‌ https://doi.org/10.1016/j.habitatint.2016.11.009.
  29. Scherer LP, Behrens A, de Koning R, Heijungs B, Tukker SA (2018) Trade-offs between social and environmental sustainable development goals. Environ Sci Policy, 90, 65–72. https://doi.org/10.1016/j.envsci.2018.10.002.
  30. Verburg, P. H., Mertz, O., Erb, K. H., Haberl, H., & Wu, W. (2013). Land system change and food security: towards multi-scale land system solutions. Current opinion in environmental sustainability, 5(5), 494-502.‌ https://doi.org/10.1016/j.cosust.2013.07.003.
  31. Van Eck, N. J., & Waltman, L. (2022). VOSviewer manual. Manual for VOSviewer for VOSviewer version 1.6.18. DOI: 10.4236/ijoc.2017.72009.
  32. Xie, H., Wen, Y., Choi, Y., & Zhang, X. (2021). Global trends on food security research: A bibliometric analysis. Land, 10(2), 119.‌ https://doi.org/10.3390/land10020119
  33. Yang, Z. H. E. N. G., Ge, Y. U., Ping-li, Z. H. O. N. G., & You-xiao, W. A. N. G. (2018). Integrated assessment of coastal ecological security based on land use change and ecosystem services in the Jiaozhou Bay, Shandong Peninsula, China. Yingyong Shengtai Xuebao, 29(12). ‌ DOI: 10.13287/j.1001-9332.201812.035
  34. Zhou, Y., Li, Y., & Xu, C. (2020). Land consolidation and rural revitalization in China: Mechanisms and paths. Land Use Policy, 91, 104379.‌ https://doi.org/10.1016/j.landusepol.2019.104379.