بررسی و ارزیابی رابطه کاربری اراضی با تغییرات دمایی در داخل محیط شهری با استفاده از داده‌های حرارتی شبانه سنجنده استر، مطالعه موردی: شهر مشگین شهر

نوع مقاله : پژوهشی - کاربردی

نویسندگان

گروه جغرافیای طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

رشد جمعیت و نیاز به فضای شهری بیشتر برای سکونت، اراضی بیشتری را به زیر ساخت‌وساز برده و شهر با تغییر کاربری اراضی مواجه می‌شود. تغییر کاربری با اثرگذاری بر روی اقلیم شهری باعث تغییر در توازن انرژی، افزایش دمای سطح زمین و دمای هوا در مناطق شهری می‌شود. بنابراین نحوة اثرگذاری کاربری‌های مختلف بر دمای سطح زمین مسئلة مهمی است که بررسی دقیق آن منجر به مدیریت بهتر جهت کاهش اثرات نامطلوب جزایر حرارتی در شهرها می‌شود؛ در پژوهش حاضر با استفاده از سنجش‌ازدور به‌عنوان روشی نوین، رابطه تغییر کاربری اراضی با دمای شبانه سطح زمین جهت شناسایی لکه‌های داغ که مقدمه‌ای برای تشکیل جزایر حرارتی در داخل محیط شهری هستند در شهر مشگین‌شهر با استفاده از داده‌های حرارتی شبانه سنجنده استر و ماهواره سنتینل 3 مطالعه شد. در ارتباط با مسئله پژوهش ابتدا دمای سطح زمین با استفاده از الگوریتم پنجره مجزا برای تصاویر شبانه سنجنده استر برآورد شد، سپس دمای سطح برآورد شده با استفاده از پروداکت حرارتی سنتینل 3 اعتبارسنجی گردید. سپس کاربری اراضی با تصویر لندست 9 و الگوریتم SVM استخراج شد. در ادامه ارتباط دمای سطح زمین با عوامل توپوگرافی (شیب و جهت شیب) و کاربری اراضی بررسی و تحلیل شد. در نهایت عواملی از قبیل ترکیب نامتقارن پدیده‌های با خصوصیات و ظرفیت حرارتی متفاوت، پراکندگی نامنظم پوشش گیاهی و زمین‌های بایر در نتیجه گسترش شهر در شناسایی و نحوه توزیع لکه‌های داغ توسط الگوریتم گتیس - اورد در منطقه موردمطالعه استنتاج گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation and Evaluation of the Relationship between Land-use and Temperature Variations within the Urban Environment using Nighttime Thermal Data from the Aster Sensor: A case study of Meshginshahr city

نویسندگان [English]

  • Sayyad Asghari Saraskanroud
  • Behrouz Faramarzi Ouri
Department of Physical Geography, Faculty of Social Science, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

ABSTRACT
Population growth and the need for more urban space for residences lead to more city land being put under construction, and the city is facing land use changes. By affecting the urban climate, land use change causes changes in the energy balance, increases land surface temperature, and air temperatures in urban areas. Therefore, the impact of different land uses on land surface temperature is an important issue that a detailed study of this can lead to better management to reduce the adverse effects of heat islands in cities. In this study, using remote sensing as a new method, the relationship between land use change and nighttime land surface temperature in Meshkin Shahr city was studied using thermal data from the ASTER sensor and the Sentinel 3 satellite to identify hot spots that are precursors to the formation of heat islands in the urban environment. Regarding the research problem, the land surface temperature was first estimated using a split window algorithm for nighttime images from the ASTER sensor. The estimated temperature was then validated using the Sentinel-3 thermal product. Then, using the Landsat 9 image and the SVM algorithm, land use was extracted. Next, the relationship between land surface temperature and topographic factors (slope and aspect) and land use was investigated and analyzed. Finally, factors such as the asymmetric combination of phenomena with different characteristics and heat capacity, irregular distribution of vegetation, and barren lands as a result of urban expansion were inferred in the identification and distribution of hot spots using the Getis-Ord algorithm in the study area.
Extended Abstract
Introduction
Rapid urban expansion, due to extensive changes in land use and cover, has had negative impacts on global environmental quality, including air quality, temperature increase, and landscape changes, as well as agricultural land conversion leading to biodiversity loss. Accordingly, cities often experience specific climatic conditions, which are called urban climates. Urban climates are characterized by differences in the city's climatic variables (air temperature, humidity, wind speed and direction, precipitation) with the surrounding low-density areas. City climate can be improved by planning the city's structure, through strategies such as locating parks and water areas (such as ponds) and constructing buildings in the direction of the winds, which results in air pollution being blown away from the city by the wind. In this regard, the land surface temperature is an important parameter that controls the physical, chemical, and biological processes of the Earth and is an important factor for studying urban climate, which affects the balance of radiation, heat flux, evaporation, and transpiration, and other key factors in urban environments, which has recently been considered an important factor in many studies. How different land uses affect the land surface temperature is an important issue, and careful study of it will lead to better management to reduce the adverse effects of heat islands in cities.
The topic addressed in this research is the investigation and evaluation of the role of urban land use changes on the formation of the land surface temperature pattern in Meshginshahr city. Our goal is to investigate the impact of land-use changes in Meshginshahr city on the land surface temperature of different areas of this city at night, considering its topography. In other words, can land use changes cause changes in the land surface temperature at night in Meshginshahr city?
 
Methodology
The study area is located between latitudes 38 degrees and 22 minutes to 38 degrees and 25 minutes north and longitudes 47 degrees and 38 minutes to 47 degrees and 42 minutes east. The selected study area covers an area of about 9.83 square kilometers. In this study, in order to estimation of the land surface temperature using aster images and also to extract land use from envi software as the main image processing software, snap software for primary processing, geometric correction and preparation of sentinel 3 images for use in complementary software, we use terrset software for land surface temperature validation was retrieved and arcgis software for the processing of hot spot analysis and their relationship with the extracted uses, as well as the preparation of the output map.
 
Results and discussion
The high spatial resolution of remote sensing sensors for studying heterogeneous areas with diverse phenomena is an important and influential feature in the findings of studies, given that we are dealing with different dimensions and sizes of phenomena. Thus, in the present study, aware that urban areas are considered heterogeneous areas, to extract the ground surface temperature alongside the aster sensor which has a resolution of 90 meters for the thermal band from the sentinel 3 thermal sensor, which has a one-kilometer resolution for the same band, was used to reveal difference in detail in the findings further. Emphasizing this point, the relationship between land-use and land surface temperature was studied for the urban area in question. The research findings indicated the negative effects of land-use change as a result of the increase in built-up areas and the lack of planning by urban managers in the final map so that areas of the city that are close to areas with vegetation are marked as cold spots however, some areas appear as hot spots, which can also be affected by construction, expansion, and renovation of the city. Nevertheless, in this same image, we see that barren areas that have lost their natural cover or have little natural cover appear as hot spots knowing that surfaces with natural cover, such as plants, water areas, and the like, which contain moisture, can be effective in reducing air temperatures. Thus preventing excessive decreases in land surface temperatures during the cold seasons of the year, it can be seen that the outskirts of the city, especially the south, southeast, and west, which do not have the necessary coverage, have been identified as cold spots at night and hot spots tend to be more towards the center and eastern periphery. Although meshginshahr is not a large city, if proper management is not carried out to preserve its natural cover along with changing land use during urban development, as a tourist city that has the potential to develop and increase its population, in the not-so-distant future it will face serious problems of heat islands, excessive energy consumption, and consequently a negative impact on the health of citizens and the environment.
 
Conclusion
The analysis of land-use temperature between both sensors, in addition to the existence of a common point, showed a difference in land use temperature for the date 2023/12/18, which was justifiable given the spatial resolution of the sensors. Also, the relationship between temperature and land use showed that the temperature of land uses is more influenced by the topography of the region and the thermal characteristics of the phenomena. The results of the relationship between land surface temperature and topographic factors (slope and aspect) showed a positive relationship between land surface temperature and slope in the warm season and an inverse relationship in the cold season. In addition, for both sensors, the highest temperatures were in the southern, southeastern, and western geographical directions, which showed a significant relationship between temperature and aspect. Finally, by implementing the getis-ord algorithm, factors such as the asymmetric combination of phenomena with different characteristics and heat capacity, irregular distribution of vegetation cover, and wasteland as a result of urban expansion were inferred as the main factors in identifying hot spots.
 
Funding
There is no funding support.
 
Authors’ Contribution
Authors contributed equally to the conceptualization and writing of the article. All of the authors approved thecontent of the manuscript and agreed on all aspects of the work declaration of competing interest none.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Aster
  • Land Use
  • Meshginshahr
  • Remote Sensing
  • Sentinel 3
  • Urban Heat Island
  1. ابراهیمی، هادی. (1398). بررسی تغییرات جزایر حرارتی در نواحی شهر با استفاده از داده‌های سنجش‌ازدور؛ مطالعه موردی: شهر تهران. پایان‌نامه برای دریافت درجه کارشناسی ارشد، رشته جغرافیای طبیعی-مخاطرات آب و هوایی، دانشکده علوم انسانی، دانشگاه محقق اردبیلی.
  2. انصاری، محمدرضا و نوروزی، آذین. (1402). بررسی خودهمبستگی فضایی دمای سطح زمین و ارتباط آن با کاربری اراضی شهر اهواز. جغرافیا و برنامه‌ریزی محیطی، 34(3)، 141-166. https://doi.org/10.22108/gep.2023.136187.1564
  3. آخوندزاده، مهدی و سراجیان، محمدرضا. (1386). کاربرد تصاویر ماهواره‌ای ASTER-Terra در نمایش جزایر حرارتی در مناطق شهری- شهر تهران. دومین همایش مقابله با سوانح طبیعی، قطب علمی مهندسی نقشه‌برداری و مقابله با سوانح طبیعی، دانشکده فنی دانشگاه تهران.
  4. پناهنده، عبدالباسط. (1395). ارتباط بین کاربری‌های شهری و جزیره حرارتی در گرگان. پایان‌نامه برای دریافت درجه کارشناسی ارشد. رشته آب و هواشناسی شهری، دانشکده علوم انسانی و اجتماعی، دانشگاه مازندران.
  5. پیرنظر، مجتبی. (1394). شناسایی جزایر حرارتی سطحی و بررسی ارتباط مکانی آن‌ها با عوامل محیطی و انسانی با استفاده از داده‌های سنجش‌ازدور (مطالعه موردی: کلان‌شهر تهران). پایان‌نامه جهت اخذ درجه کارشناسی ارشد در رشته سنجش‌ازدور و سیستم اطلاعات جغرافیایی ـ مطالعات آب‌وخاک، دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز.
  6. خدمت زاده، علی؛ موسوی، میرنجف؛ محمدی ترکمانی، حجت و محمدی، میر صادق. (1400). تحلیلی بر تغییرات کاربری زمین و شکل‌گیری جزایر حرارتی در حریم شهر ارومیه با استفاده از سنجش‌ازدور. فصلنامه علمی برنامه‌ریزی منطقه‌ای، 11(41)، 119-134. https://doi.org/10.30495/jzpm.2021.3965
  7. رضایی، یوسف و فاطمی، سیدباقر. (1396). مبانی سنجش‌ازدور. تهران: انتشارات آزاده (راهیان ارشد).
  8. روکی، زهره؛ محمدی، حسین و زندی، رحمان. (1402). نقش تغییرات کاربری اراضی بر شکل‌گیری دمای سطح زمین در شهرها مطالعه موردی: شهر اصفهان. پژوهش‌های جغرافیای طبیعی، 55(3)، 1-17.https://doi.org/10.22059/jphgr.2023.361681.1007779
  9. زینالی، بتول؛ شکرزاده فرد، الهام و پیروزی و الناز. (۱۳۹۷). ارزیابی و پهنه‌بندی آلودگی هوا با استفاده از مدل VIKOR، مطالعه موردی: شهر تبریز. مخاطرات محیط طبیعی، 7(15)، ۶۷-۸۸.
  10. زینالی، بتول؛ اصغری سراسکانرود، صیاد؛ محمدزاده شیشه گران، مریم و قلعه، احسان. (1400). پایش دمای سطح زمین و بررسی رابطه کاربری اراضی با دمای سطح با استفاده از تصاویر سنجنده OLI و ETM+ (مطالعه‌موردی: شهرستان‌های پارس‌آباد و اصلاندوز). نشریه پژوهش‌های اقلیم‌شناسی، 1400(46)، 101-114.
  11. سبحانی، بهروز و منصوری، میلاد. (1402). واکاوی نقش تغییرات دما در کاربری‌های اراضی شهری با استفاده از تصاویر ماهواره لندست (مطالعه موردی شهرستان آمل. مطالعات علوم محیط‌زیست، 8(4)، 7437-7448. https://doi.org/10.22034/jess.2023.392524.2000
  12. علوی پناه، سید کاظم؛ گودرزی مهر، سعید و خاکباز، باهره. (1390). فناوری سنجش از راه دور حرارتی و کاربرد آن در شناسایی پدیده‌ها. نشریه نشاء علم، 2(1)، 25-29. https://dor.isc.ac/dor/20.1001.1.2008935.1390.02.1.4.0
  13. قدسی مآب، زهره و افضلی بهبهانی، خسرو. (1393). آشنایی با پدیده جزیره گرمایی در شهرها و راهکارهای پیشگیری از آن نمونه موردی شهر تهران. اولین کنفرانس ملی توسعه پایدار در علوم جغرافیا و برنامه‌ریزی، معماری و شهرسازی، تهران، 1-7.
  14. ملکی، محمد؛ احمدی، زهرا و دوستی، رحمن. (1398). تغییرات دمای سطح شهر کرمانشاه در دوره 1393-1397. نشریه جغرافیا و روابط انسانی، 2(3)، 309-319. https://dor.isc.ac/dor/20.1001.1.26453851.1398.2.3.18.0
  15. ولیزاده کامران، خلیل؛ غلام نیا، خلیل؛ عینالی، گلزار و موسوی، سید محمد. (1396). برآورد دمای سطح زمین و استخراج جزایر حرارتی با استفاده از الگوریتم پنجره مجزا و تحلیل رگرسیون چند متغیره (مطالعه موردی شهر زنجان). فصلنامه علمی و پژوهشی پژوهش و برنامه‌ریزی شهری، 8(30)، 35-50. https://dorl.net/dor/20.1001.1.22285229.1396.8.30.3.9
  16. Abutaleb, K., Ngie, A., Darwish, A., Ahmed, M., Arafat, S., & Ahmed, F. (2015). Assessment of urban heat island using remotely sensed imagery over greater cairo, Egypt. Advances In Remote Sensing, 4(1), 35. http://dx.doi.org/10.4236/ars.2015.41004
  17. Akhoondzadeh, M & Serajian, M. R. (2007). Application of terra-aster satellite images in showing heat islands in urban areas - tehran city, second conference of natural disaster confrontation, Scientific And Engineering Center For Mapping And Natural Disaster Confrontation, faculty of engineering, university of tehran. [In Persian].
  18. Alavipanah, S. K., Goodarzi Mehr, S., & Khakbaz, B. (2011). Thermal remote sensing technology and its application to phenomena identification. Science Cultivation, 2(1), 25-29. https://dor.isc.ac/dor/20.1001.1.2008935.1390.02.1.4.0 [In Persian].
  19. Ansari, M.R & Norouzi, A. (2023). Spatial autocorrelation of land surface temperature and its relationship with land use in ahvaz city, Geography And Environmental Planning, 34(3), 141-165. https://doi.org/10.22108/gep.2023.136187.1564 [In Persian].
  20. Camilloni, I., & Barrucand, M. (2012). Temporal variability of the buenos aires, argentina, urban heat island. Theoretical And Applied Climatology, (107), 47-58. https://doi.org/10.1007/s00704-011-0459-z
  21. Darvishi, Sh. (2018). Impact Of Urban Surface Characteristics On Spatiotemporal Patterns Of Surface Temperature (Case Study: Sanandaj City). thesis for master's degree, department of remote sensing and geographic information system, faculty of environmental sciences, Haraz, Amol. [In Persian].
  22. Ebrahimi, H. (2019). An Investigation Of Temperature Distribution Patterns In Tehran Using Thermal Data Of Landsat-Tm Images, Investigation Of Changes In Thermal Islands In Urban Areas Using Remote Sensing Data(Case Study: Tehran). Thesis submitted in partial fulfillment for the degree of m.a. In weather hazards, faculty of literature and humanities department of natural geography, University of mohaghegh ardabili. [In Persian].
  23. Fatemi, S B., Rezaei, Y. (2012). Basics of remote sensing. Tehran: Azadeh Publications. [In Persian].
  24. Ghodsi Maab, Z., & Afzali Behbahani, Kh. (2017). Introduction to the thermal phenomenon in cities and strategies for its prevention(case study of tehran). First National Conference On Sustainable Development In Geographical Sciences And Planning, Architecture And Urbanism, Tehran, 1-7. [In Persian].
  25. Jiménez-Muñoz, J. C., Sobrino, J. A., Gillespie, A., Sabol, D., & Gustafson, W. T. (2006). Improved land surface emissivities over agricultural areas using aster ndvi. Remote Sensing Of Environment, 103(4), 474-487. http://dx.doi.org/10.1016/j.rse.2006.04.012
  26. Khedmatzadeh, A., Mousavi, M., Mohamadi Torkamani, H., Mohammadi, M.S. (2021). An analysis of land use changes and thermal island formation in urmia city exclusion using remote sensing, Journal of Regional Planning, 11(41), 119-134. https://doi.org/10.30495/jzpm.2021.3965 [In Persian].
  27. Krishna, R. (1972). Remote sensing of urban heat islands from an environmental satellite. Bulletin of The American Meteorological Society, (53), 647-648. https://doi.org/10.1175/1520-0477-53.7.648
  28. Maleki, M., Ahmadi, Z., & Dosti, R. (2019). Kermanshah land surface temperature changes in during 1393-1397 periods. Geography And Human Relationships, 2(3), 309-319. https://dor.isc.ac/dor/20.1001.1.26453851.1398.2.3.18.0 [In Persian].
  29. Mao, K., Shi, J., Li, Z., Qin, Z., Wang, X., & Jiang, L. (2006). A multiple-band algorithm for separating land surface emissivity and temperature from aster imagery. In 2006 Ieee International Symposium On Geoscience And Remote Sensing, 1358-1361. http://dx.doi.org/10.1109/IGARSS.2006.351
  30. Ndossi, M. I., & Avdan, U. (2016). Inversion of land surface temperature (lst) using terra aster data: a comparison of three algorithms. Remote Sensing, 8(12), 993. https://doi.org/10.3390/rs8120993
  31. Panahandeh, A. (2017). The Relationship Between Urban Landuse And Urban Heat Island In Gorgan. Thesis submitted in partial fulfilment of the requirements for the degree of m.sc in urban climatology, Faculty of humanities and social sciences, University of mazandaran. [In Persian].
  32. Pirnazar, M. (2015). Identifying Surface Heat Islands And Investigating Their Spatial Relationship With Environmental And Human Factors Using Remote Sensing Data (Case Study: Tehran Metropolis). Thesis for master's degree, faculty of planning and environmental sciences, University of tabriz. [In Persian]. https://elmnet.ir/doc/10868496-52409
  33. Rongali, G., Keshari, A. K., Gosain, A. K., & Khosa, R. (2018). Split-window algorithm for retrieval of land surface temperature using landsat 8 thermal infrared data. Journal Of Geovisualization And Spatial Analysis, (2), 1-19.
  34. Rooki, Z., Mohammadi, H., & Zandi, R. (2023). The role of land use changes in shaping surface temperature in cities: a case study of isfahan. Physical Geography Research, 55(3), 1-17. https://doi.org/10.22059/jphgr.2023.361681.1007779 [In Persian].
  35. Sobhani, B., & Mansori, M. (2024). Analyzing the role of temperature changes in urban land uses using landsat satellite images (Case Study Of Amol City). Journal Of Environmental Science Studies, 8(4), 7437-7448. https://doi.org/10.22034/jess.2023.392524.2000 [In Persian].
  36. Sobrino, J. A., Raissouni, N., & Li, Z. L. (2001). A comparative study of land surface emissivity retrieval from noaa data. Remote Sensing Of Environment, 75(2), 256-266. https://doi.org/10.1016/S0034-4257(00)00171-1
  37. Suresh, S., Ajay Suresh, V., Mani, K. (2016). Estimation of land surface temperature of high range mountain landscape of devikulan taluk using landsal 8 data. International Journal Of Research In Engineering And Technology, 5(1), 2321-7308.
  38. Valizadeh Kamran, K., Gholamnia, K., Eynali, G., & Moosavi, S.M. (2017). Estimation land surface temperature and extract heat islands using split window algorithm and multivariate regression analysis (Case Study Of Zanjan). Journal Of Research And Urban Planning, 8(30), 35-50. https://dorl.net/dor/20.1001.1.22285229.1396.8.30.3.9 [In Persian].
  39. Voogt, J. A. (2004). Urban heat islands: hotter cities. America Institute Of Biological Sciences, 4-7. https://www.scirp.org/reference/referencespapers?referenceid=1436823
  40. Wang, R., Cai, M., Ren, Ch., Bechtel, B., Xu, Y., Ng, E. (2019). Detecting multitemporal land cover change and land surface temperature in pearl river delta by adopting local climate zone. Urban Climate, (28), 1-16. https://doi.org/10.1016/j.uclim.2019.100455
  41. Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing Of Environment, 89(4), 467-483. https://doi.org/10.1016/j.rse.2003.11.005
  42. Xiao, J., & Moody, A. (2005). A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central new mexico, usa. Remote Sensing Of Environment, 98(2-3), 237-250. https://doi.org/10.1016/j.rse.2005.07.011
  43. Zenali, B., Asghari Saraskanrood, S., Mohamadzadeh Shishegaran, M., & Ghale, E. (2021). Monitoring the land surface temperature and examining the relationship between land use and surface temperature using oli and etm+ sensor images (Case Study: Cities Of Parsabad And Aslanduz). Journal Of Climate Research, 1400(46), 101-114. [In Persian].
  44. Zhang, J., Wang, Y., & Li, Y. (2006). A c++ program for retrieving land surface temperature from the data of landsat tm/etm+ band6. Computers & Geosciences, 32(10), 1796-1805. https://doi.org/10.1016/j.cageo.2006.05.001
  45. Zhang, Y., Li, L., Chen, L., Liao, Z., Wang, Y., Wang, B., & Yang, X. (2017). A modified multi-source parallel model for estimating urban surface evapotranspiration based on aster thermal infrared data. Remote Sensing, 9(10), 1029. https://doi.org/10.3390/rs9101029
  46. Zhang, Y., Yiyun, C., Qing, D., & Jiang, P. (2012). Study on urban heat island effect based on normalized difference vegetated index: a case study of wuhan city. Procedia Environmental Sciences, (13), 574-581. https://doi.org/10.1016/j.proenv.2012.01.048