حجازیزاده، زهرا و نادر پروین (1388) «بررسی تغییرات دما و بارش تهران طی نیم قرن اخیر»، فصلنامة جغرافیا (برنامهریزی منطقهای)، پیششماره، شمارۀ صفر، صص 43-56.
مرکز آمار ایران، 1390، نتایج تفصیلی سرشماری عمومی و نفوس و مسکن.
Angel, S. and Blei, A. M. (2016), The spatial structure of American cities: The great majority of workplaces are no longer in CBDs, employment sub-centers, or live-work communities. Cities, No. 51: 21–35. https://doi.org/10.1016/j.cities.2015.11.031
Angel, S. and Sheppard, S. (2005), The dynamics of global urban expansion. Transport and Urban …, 1–207. https://doi.org/10.1038/nature09440
Chander, G. Markham, B. L. and Helder, D. L. (2009), Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, Vol. 113, NO. 5: 893–903. https://doi.org/10.1016/j.rse.2009.01.007
Chen, X. L. Zhao, H. M. Li, P. X. and Yin, Z. Y. (2006), Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes, Remote Sensing of Environment,Vol.104, No.2:133–146. https://doi.org/10.1016/j.rse.2005.11.016
Cibula, W. G. Zetka, E. F. and Rickman, D. L. (1992), Response of thematic mapper bands to plant water stress, International Journal of Remote Sensing, Vol. 13, No. 10: 1869–1880.
https://doi.org/10.1080/01431169208904236
Coisnon, T. Oueslati, W. and Salanié, J. (2014), Urban sprawl occurrence under spatially varying agricultural amenities, Regional Science and Urban Economics, Vol. 44, No. 1: 38–49.
https://doi.org/10.1016/j.regsciurbeco.2013.11.001
Congalton, R. G. (1991), A review of assessing the accuracy of classifications of remotely sensed data, Remote Sensing of Environment,Vol. 37, No. 1: 35–46. https://doi.org/10.1016/0034-4257(91)90048-B
Du, Z. Li, W. Zhou, D. Tian, L. Ling, F. Wang, H. Sun, B. (2014), Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote Sensing Letters, Vol.5, No. 7: 672–681.
https://doi.org/10.1080/2150704X.2014.960606
ENVI, 2009. Atmospheric correction module: QUAC and FLAASH User’s Guide, Available online: _www.exelisvis.com/portals/0/pdfs/envi/Flaash Module.pdf_(accessed 19 December 2014).
Estoque, R. C. Estoque, R. S, and Murayama, Y. (2012), Prioritizing Areas for Rehabilitation by Monitoring Change in Barangay-Based Vegetation Cover. ISPRS International Journal of Geo-Information, Vol. 1, No.1: 46–68. https://doi.org/10.3390/ijgi1010046
Estoque, R. C, and Murayama, Y. (2013), Landscape pattern and ecosystem service value changes: Implications for environmental sustainability planning for the rapidly urbanizing summer capital of the Philippines. Landscape and Urban Planning, No. 116: 60–72. https://doi.org/10.1016/j.landurbplan.2013.04.008
Estoque, R, and Murayama, Y. (2014), A geospatial approach for detecting and characterizing non-stationarity of land- change patterns and its potential effect on modeling accuracy. GIScience & Remote Sensing, No. 51(June 2014): 239–252. https://doi.org/10.1080/15481603.2014.908582
Foody, G. M. (2002), Status of land cover classification accuracy assessment, Remote Sensing of Environment, Vol. 80, No.1:185–201.
https://doi.org/10.1016/S0034-4257(01)00295-4
Ganeshkumar.B, and Mohan.M, (2014),Urban Sprawl Spatial Modelingusing SLEUTH Model,International Journal of Geospatial Engineering and Technology Vol.1,No.1:22 – 28.
Gao, B. C. (1996), NDWI - A normalized difference water index for remote sensing of vegetation liquid water from space, Remote Sensing of Environment, Vol. 58, No. 3: 257–266. https://doi.org/10.1016/S0034-4257(96)00067-3
Ginkel,V.H.2010,Sustainable Urban Futures:Challenges And Opportunities. Paper Presented at School of Humanities, Universiti Sains Malaysia, Penang.May 17, 2010.
Han, J. Hayashi, Y. Cao, X. and Imura, H. (2009), Application of an integrated system dynamics and cellular automata model for urban growth assessment: A case study of Shanghai, China, Landscape and Urban Planning,Vol. 91, No. 3: 133–141. https://doi.org/10.1016/j.landurbplan.2008.12.002
Jaeger, J. A. G. and Schwick, C. (2014), Improving the measurement of urban sprawl: Weighted Urban Proliferation (WUP) and its application to Switzerland. Ecological Indicators, No. 38: 294–308. https://doi.org/10.1016/j.ecolind.2013.11.022
Jiang, G. Ma, W. Qu, Y. Zhang, R. and Zhou, D. (2016), How does sprawl differ across urban built-up land types in China? A spatial-temporal analysis of the Beijing metropolitan area using granted land parcel data. Cities, No. 58: 1–9. https://doi.org/10.1016/j.cities.2016.04.012
Kawamura, M. Jayamanna, S. and Tsujiko, Y. (1996), Relation between social and environmental conditions in Colombo Sri Lanka and the urban index estimated by satellite remote sensing data. International Archives of Photogrammetry and Remote Sensing.
Kong, F. Yin, H. Nakagoshi, N. and James, P. (2012), Simulating urban growth processes incorporating a potential model with spatial metrics. Ecological Indicators, No. 20: 82–91. https://doi.org/10.1016/j.ecolind.2012.02.003
Laben, C.A. and Brower, B.V. (2000), Process for enhancing the spatial resolution of mul-tispectral imagery using pan-sharpening. US Patent 6011875, Eastman KodakCompany, Rochester, N.Y.
Li, W. Bai, Y. Chen, Q. He, K. Ji, X. and Han, C. (2014), Discrepant impacts of land use and land cover on urban heat islands: A case study of Shanghai, China. Ecological Indicators, No. 47: 171–178. https://doi.org/10.1016/j.ecolind.2014.08.015
Li, W. Du, Z. Ling, F. Zhou, D. Wang, H. Gui, Y. Zhang, X. (2013), A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI, Remote Sensing, Vol. 5, No.11, 5530–5549. https://doi.org/10.3390/rs5115530
Longley, P. (2002), Geographical Information Systems: will developments in urban remote sensing and GIS lead to “better” urban geography? Progress in Human Geography,Vol. 26, No. 2:231–239. https://doi.org/10.1191/0309132502ph366pr
Matthias, B. Martin, H. (2003), Mapping imperviousness using NDVI and linearspectral unmixing of ASTER data in the Cologne-Bonn region (Germany). In: Proceedings of the SPIE 10th International Symposium on Remote Sensing, 8–12September, Vol. 5239: 274–284.
Masek, J. G. Lindsay, F. E. and Goward, S. N. (2000), Dynamics of urban growth in the Washington DC metropolitan area, 1973-1996, from Landsat observations, International Journal of Remote Sensing,Vol. 21, No. 18: 3473–3486. https://doi.org/10.1080/014311600750037507
McFeeters, S. K. (1996), The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features, International Journal of Remote Sensing, Vol. 17, No. 7: 1425–1432.
https://doi.org/10.1080/01431169608948714
Otsu, N. (1979), A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics,Vol. 9, No.1: 62–66.
https://doi.org/10.1109/TSMC.1979.4310076
Polydoros, A. and Cartalis, C. (2015). Use of Earth Observation based indices for the monitoring of built-up area features and dynamics in support of urban energy studies. Energy {and} Buildings, No. 98: 92–99. https://doi.org/10.1016/j.enbuild.2014.09.060
Rouse, J.W. Haas, R.H. Schell, J.A. Deering, D.W. (1973), Monitoring vegetation sys-tems in the Great Plains with ERTS. In: Third ERTS Symposium, NASA SP-351 I,pp. 309–317.
Seto, K. C. Güneralp, B. and Hutyra, L. R. (2012), Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, Vol. 109, No. 40: 16083–16088. https://doi.org/10.1073/pnas.1211658109
Thanapura, P. Helder, D. L. Burckhard, S. Warmath, E. O’Neill, M. and Galster, D. (2006), Mapping urban land cover using QuickBird NDVI image and GIS spatial modeling for runoff coefficient determination. Annual Conference of the American Society for Photogrammetry and Remote Sensing 2006: Prospecting for Geospatial Information Integration, ASPRS 2006,VoL. 3, No. 1: 1421–1432. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84869030547&partnerID=40&md5=91481ffad2567b9cef1320833023f2c6
Thapa, R. B. & Murayama, Y. (2011), Urban growth modeling of Kathmandu metropolitan region, Nepal. Computers, Environment and Urban Systems, Vol. 35, No. 1: 25–34. https://doi.org/10.1016/j.compenvurbsys.2010.07.005
USGS, (2006), Multi-resolution Land Characteristics 2001 (MRLC2001) ImageProcessing Procedure, Available online: _http://landcover.usgs.gov/pdf/image preprocessing.pdf_ (accessed: 19 December 2014).
USGS, (2013a), Using the USGS Landsat 8 Product, Available online:_http://landsat.usgs.gov/Landsat8 Using Product.php_ (accessed: 19 December2014).
USGS, (2013b), September 27, 2013—Landsat 7 Thermal Band CalibrationUpdate, Available online: _http://landsat.usgs.gov/science L7 Cal Notices.php_(accessed: 19 December 2014).
United Nations. (2007), World Urbanization Prospects The 2007 Revision Highlights. Desa, ESA/P/WP/2(4), 883. https://doi.org/10.2307/2808041
Weng, Q. (2012), Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sensing of Environment, No. 117: 34–49. https://doi.org/10.1016/j.rse.2011.02.030
Weng, Q. Lu, D. and Schubring, J. (2004), Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment,Vol. 89, No. 4: 467–483. https://doi.org/10.1016/j.rse.2003.11.005
Xu, H. (2006), Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, Vol. 27, No. 14: 3025–3033. https://doi.org/10.1080/01431160600589179
Xu, H. (2008), A new index for delineating built‐up land features in satellite imagery. International Journal of Remote Sensing, Vol. 29, No. 14: 4269–4276. https://doi.org/10.1080/01431160802039957
Xu, H. (2010), Analysis of Impervious Surface and its Impact on Urban Heat Environment using the Normalized Difference Impervious Surface Index (NDISI). Photogrammetric Engineering & Remote Sensing, Vol. 76, No. 5: 557–565. https://doi.org/10.14358/PERS.76.5.557
Xu, H. Huang, S. and Zhang, T. (2013), Built-up land mapping capabilities of the ASTER and Landsat ETM+ sensors in coastal areas of southeastern China. Advances in Space Research, Vol. 52, No.8: 1437–1449. https://doi.org/10.1016/j.asr.2013.07.026
Zeng, C. Liu, Y. Stein, A. and Jiao, L. (2015), International Journal of Applied Earth Observation and Geoinformation Characterization and Spatial Modeling of Urban Sprawl in the Wuhan Metropolitan Area, China. International Journal of Applied Earth Observations and Geoinformation, No.34: 10–24. https://doi.org/10.1016/j.jag.2014.06.012
Zha, Y. Gao, J. and Ni, S. (2003), Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, Vol. 24, NO. 3: 583–594. https://doi.org/10.1080/01431160304987
Zhang, Y. Odeh, I. O. A. and Han, C. (2009), Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. International Journal of Applied Earth Observation and Geoinformation, Vol. 11, No. 4: 256–264. https://doi.org/10.1016/j.jag.2009.03.001