تحلیل الگوی فضایی-زمانی رقابت‌های منطقه‌ای در ایران و نقش آن بر مهاجرت‌های بین منطقه‌ای

نوع مقاله : پژوهشی - کاربردی

نویسنده

گروه جغرافیا، دانشگاه یزد، یزد، ایران

10.22059/jurbangeo.2024.377902.1954

چکیده

رقابت‌های بین منطقه‌ای با توجه به تشدید حرکت سرمایه‌های مالی و نیروی انسانی در بین مناطق شهری در عصر جامعه شبکه‌ای در حال افزایش است. پژوهش حاضر با توجه به اهمیت فزاینده این موضوع، الگوی فضایی-زمانی رقابت‌های بین منطقه‌ای را در ایران در فاصله زمانی 1395-1380 تحلیل و تأثیر این رقابت‌ها را بر تعیین الگوی مهاجرت‌های بین منطقه‌ای با استفاده از روش‌های آمار فضایی مانند روش موران افتراقی I، روش K-Medioid و روش رگرسیون جغرافیایی موزون در فاصله زمانی 1395-1385 تبیین می‌کند. تحلیل الگوی تغییرات فضایی-زمانی مناطق موردمطالعه بر اساس شاخص رقابت‌پذیری منطقه‌ای و روش موران افتراقی I در فاصله زمانی 1395-1380 نشان داد که مناطق مشابه از نظر شاخص رقابت‌پذیری، در مجاورت جغرافیایی یکدیگر قرار ندارند و تغییرات هر منطقه در این فاصله زمانی بدون همبستگی معنادار فضایی-زمانی با مناطق مجاور آن رخ‌داده است. هم‌چنین طبقه‌بندی مناطق با استفاده از روش K-Medioid و بر اساس شاخص رقابت بین منطقه‌ای در همین فاصله زمانی نشان داد که مناطق برخوردار از معادن نفتی و گازی عمده، در طبقات بالای رتبه‌بندی قرار دارند. هم‌چنین، شاخص رقابت‌پذیری منطقه‌ای بر اساس مدل رگرسیون جغرافیایی موزون قادر است از 0.01 تا 0.9 مقدار تغییر در تعداد مهاجران واردشده به هر منطقه را در سال 1385 و بین 0.22 تا 0.83 این تغییرات را در سال 1395 تبیین کند. بر اساس مدل رگرسیون ساده نیز شاخص رقابت بین منطقه‌ای 0.29 تغییر در تعداد مهاجران واردشده را در سال 1385 و 0.56 این تغییرات را در سال 1395 تبیین می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Spatio-Temporal analysis of Inter-regional competitiveness and Its influence on Inter-regional migration patterns in Iran

نویسنده [English]

  • Hojatollah Rahimi
Department of Geography, Yazd University, Yazd, Iran
چکیده [English]

ABSTRACT
Improving regional-territorial competitiveness has become a critical issue in regional planning due to the increase in the spatial movements of financial resources and human capital in the contemporary networked society. Considering the increasing importance of the issue, the present article using different spatial statistics methods such as differential Moran I method I, k-medoids cluster analysis, and geographically weighted regression, focused on analyzing the spatial-temporal change in inter-regional competitiveness and its influence on inter-regional migration in Iran from 2011 to 2016. The results showed that the pattern of spatio-temporal change in the inter-regional competitiveness index for each region during 2001-2016 has a weak correlation with that in its neighboring regions. In other words, regions showed weak similarities according to their competitiveness scores. The same pattern can be seen for the pattern of inter-regional migration. Regions exhibited negative but weak spatio-temporal correlation with each other in terms of the total number of immigrants in the years 2006 and 2011. The role of inter-regional competitiveness in explaining inter-regional migration increased in 2016 compared with 2006, implying the increasing significance of inter-regional competitiveness in determining the spatio-temporal pattern of inter-regional migration in Iran. As a result, those regions that do not take strategies to improve their regional competitiveness should expect to encounter an increase in the number of emigrants. In this way, inter-regional competitiveness can reinforce uneven regional development in the future.
Extended Abstract
Introduction
Improving regional-territorial competitiveness has become a critical issue in regional planning due to the increase in the spatial movements of financial resources and human capital in the contemporary networked society. Considering the increasing importance of the issue, the present article focused on analyzing the spatial-temporal change in inter-regional competitiveness and its influence on inter-regional migration in Iran from 2011-2016.
 
Methodology
To assess the relationship between the spatial-temporal patterns of inter-regional competitiveness and migrations, at first, the regional competitiveness index was measured according to Equation 1.
 




Equation 1


=




In equation 1,  represents the amount of GDP of region i in yeart,  is the total GDP of all regions in year t, measures GDP per capita of region i in year t,  is the inverse distance between Region i and j in year t and  represents the total inverse distance between all regions. GDP is the added value created by producing goods and services in year t. The inverse distance between regions was calculated based on equation 2.
 




Equation 2


=




In equation 2,  measures the geographical distance between region i and j in year t, and ln represents the natural logarithm of the geographical distance between region i and j in year t. In the next step, the spatio-temporal changes in the regional competitiveness index between 2001 and 2016 were analyzed using differential Moran I method I. In the third step, using k-medoids cluster analysis, the regions were classified based on their inter-regional competitiveness index to explore the spatio-temporal changes in the index in 2001, 2006, 2011, and 2016. The k-medoids cluster analysis was also used to classify regions by integral number of immigrant volumes in 2006 and 2016. Finally, the geographically weighted regression was applied to measure the influence of inter-regional competitiveness on inter-regional migration in 2006 and 2016, respectively.
 
Results and discussion
The results showed that the regions were weakly correlated according to the changes in the spatio-temporal pattern of the inter-regional competitiveness index during 2010-2016. In other words, the regions that were close to each other in terms of competitiveness index were not geographically contiguous, and the changes in the competitiveness of each region showed no significant correlation with the neighboring regions. While the direction of the correlations from 2001 to 2006 and from 2006 to 2011 was negative, it was positive between 2011 and 2016 and from 2001 to2016, indicating that the changes in the inter-regional competitiveness score of each region were geographically different from its neighboring regions in the first two periods. In contrast, each region showed changes similar to that of its neighboring regions in the second two periods. K-Medioid cluster analysis showed that regions that occupied top ranks according to the inter-regional competition index during 2006-2016 have rich resources of oil and gas mines. In addition, the analysis of the spatio-temporal variability in the number of immigrants between 2006 and 2016 showed a negative but weak correlation between regions. Accordingly, the two provinces of Kermanshah and Hamadan were identified as migration-cold regions surrounded by regions having lower numbers of immigrants than the average in the same period. As the K-Medioid-based classification of regions in terms of the number of immigrants in 2006 and 2016 showed, Tehran region was situated in the first rank, and Kerman, Mazandaran, East Azarbaijan, and West Azarbaijan regions occupied the second rank. The geographically weighted regression model was applied to explain the role of inter-regional competitiveness in the pattern of inter-regional migrations in Iran in 2006 and 2016, respectively. As the model showed, the variable of inter-regional competitiveness explained about 0.01 to 0.9 of the variation in the number of immigrants in 2011. This model explained between 0.22 and 0.83 of the change in the number of immigrants in 2016. In addition, the simple non-geographic regression showed that 0.29 changes in the number of immigrants in 2006 and 0.56 of these changes in 2016 are dependent on inter-regional competitiveness.
 
 
Conclusion
In general, the pattern of spatio-temporal change in the inter-regional competitiveness index for each region during 2001-2016 had a weak correlation with that in its neighboring regions. In other words, regions showed weak similarities with each other according to their competitiveness scores. The same pattern can be seen for the pattern of inter-regional migration. Regions exhibited negative but weak spatio-temporal correlation with each other in terms of the total number of immigrants in the years 2006 and 2011. The role of the inter-regional competitiveness index in explaining inter-regional migration increased in 2016 compared with 2006, implying the increasing significance of inter-regional competitiveness in determining the spatio-temporal pattern of inter-regional migration in Iran. As a result, those regions that do not take strategies to improve their regional competitiveness, should expect to encounter an increase in the number of emigrants. In this way, inter-regional competitiveness can reinforce uneven regional development in the future.
 
Funding
There is no funding support.
 
Authors’ Contribution
Author contributed equally to the conceptualization and writing of the article. All of the authors approved thecontent of the manuscript and agreed on all aspects of the work declaration of competing interest none.
 
Conflict of Interest
Author declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Regional competitiveness
  • Inter-regional migration
  • Spatio-temporal patterns
  • Iran
  1. پوراحمد، احمد؛ رحیمی، حجت‌اله؛ مشکینی، ابوالفضل و حاتمی‌نژاد، حسین. (1394). تبیین پیامدهای گفتمان جهانی گرایی بر الگوی حکمروایی قلمرویی کلان‌شهرها (نمونه موردی: کلان‌شهر تهران). فصلنامه آمایش جغرافیایی فضا، 5(18)، 193-208.
  2. رحیمی، حجت‌اله. (1402). تیپولوژی مناسبات کارکردی-فضایی دولت، بازار و جامعه در سیستم‌های کلان‌شهری چند سطحی. ارائه‌شده در سومین کنفرانس بین‌المللی تفکر سیستمی در عمل، 1244-1259.
  3. زندی، لیلی؛ صادقی، رسول؛ و عسکری ندوشن، عباس. (1398). ساختار فضایی مهاجرت‌های بین استانی در ایران: کاربرد مدل‌های لگاریتم خطی. نامه انجمن جمعیت‌شناسی ایران، 14(28)، 69-111. doi:10.22034/jpai.2019.239439
  4. صادقی، رسول. (1401). بیکاری، توسعه نابرابر منطقه‌ای و الگوهای فضایی مهاجرت داخلی در ایران. پژوهش انحرافات و مسائل اجتماعی، 3، 41-65.
  5. صادقی، رسول؛ اسمعیلی، نصیبه؛ و عباسی شوازی، محمدجلال. (1400). تحصیلات، توسعه و مهاجرت‌های داخلی در ایران. نامه انجمن جمعیت‌شناسی ایران، 16(31)، 193-215. doi:10.22034/jpai.2021.128570.1152
  1. Acs, Z., & Sanders, M. (2021). Endogenous growth theory and regional extensions. Springer.
  2. Aldashev, A., & Dietz, B. (2014). Economic and spatial determinants of interregional migration in Kazakhstan. Economic Systems, 38(3), 379-396. https://doi.org/10.1016/j.ecosys.2013.10.004
  3. Anselin, L. (2019). Bivariate, Differential, and EB Rate Moran Scatter Plot. GeoDa. University of Chicago Center for Spatial Data Science. Retrieved from https://geodacenter.github.io/workbook/5b_global_adv/lab5b.html#differential-moran-scatter-plot
  4. Arora, P., & Varshney, S. (2016). Analysis of k-means and k-medoids algorithm for big data. Procedia Computer Science, 78, 507-512. https://doi.org/10.1016/j.procs.2016.02.095
  5. Basile, R., Mantuano, M., Girardi, A., & Russo, G. (2019). Interregional migration of human capital and unemployment dynamics: evidence from Italian provinces. German Economic Review, 20(4), e385-e414. https://doi.org/10.1111/geer.12172
  6. Begg, I. (2002). 'Investability': The Key to Competitive Regions and Cities? Regional Studies, 36(2), 187-193. https://doi.org/10.1080/00343400220121972
  7. Bernard, A., & Bell, M. (2018). Educational selectivity of internal migrants: A global assessment. Demographic research, 39, 835-854. https://doi.org/10.4054/DemRes.2018.39.29
  8. Bristow, G. (2005). Everyone's a ‘winner’: problematising the discourse of regional competitiveness. Journal of economic geography, 5(3), 285-304. https://doi.org/10.1093/jeg/lbh063
  9. Bristow, G. (2010). Resilient regions: re-‘place'ing regional competitiveness. Cambridge Journal of Regions, Economy and Society, 3(1), 153-167. https://doi.org/10.1093/cjres/rsp030
  10. Brunsdon, C., Fotheringham, A., & Charlton, M. (1998). Geographically weighted regression-modelling spatial non-stationarity. Journal of The Royal Statistical Society, Series D: The Statistician, 47(3), 431-443.
  11. Buch, T., Hamann, S., Niebuhr, A., & Rossen, A. (2014). What makes cities attractive? The determinants of urban labour migration in Germany. Urban Studies, 51(9), 1960-1978. https://doi.org/10.1177/0042098013499796
  12. Camagni, R. (2017). On the concept of territorial competitiveness: sound or misleading? Seminal Studies in Regional and Urban Economics: Contributions from an Impressive Mind, 93-113. https://doi.org/10.1080/0042098022000027022
  13. Capello, R. (2020). Proximity and regional competitiveness. Scienze Regionali, 19(3), 373-394. DOI: 10.14650/98284
  14. Causa, O., Abendschein, M., & Cavalleri, M. C. (2021). The laws of attraction: Economic drivers of inter-regional migration, housing costs and the role of policies. ECD Economics Department Working Papers, No. 1679, OECD Publishing, Paris. https://doi.org/10.1787/da8e368a-en.
  15. Cavalleri, M. C., Luu, N., & Causa, O. (2021). Migration, housing and regional disparities: A gravity model of inter-regional migration with an application to selected OECD countries. OECD Economics Department Working Papers, No. 1691, OECD Publishing, Paris, https://doi.org/10.1787/421bf4aa-en.
  16. Cooke, P. (2004). Competitiveness as cohesion: social capital and the knowledge economy. In City matters (pp. 153-170): Policy Press.
  17. Dijkstra, L., Annoni, P., & Kozovska, K. (2011). A new regional competitiveness index: Theory, methods and findings. European Union Working Papers, 2-26.
  18. Etzo, I. (2011). The determinants of the recent interregional migration flows in Italy: A panel data analysis. Journal of regional science, 51(5), 948-966.
  19. Ewers, M. C. (2007). Migrants, markets and multinationals: competition among world cities for the highly skilled. GeoJournal, 68, 119-130. https://doi.org/10.1007/s10708-007-9077-9
  20. Faggian, A., McCann, P., & Sheppard, S. (2007). Human capital, higher education and graduate migration: an analysis of Scottish and Welsh students. Urban Studies, 44(13), 2511-2528. https://doi.org/10.1080/00420980701667177
  21. Gardiner, B., Martin, R., & Tyler, P. (2012). Competitiveness, productivity and economic growth across the European regions. In Regional competitiveness (pp. 55-77): Routledge.
  22. Hazans, M. (2003). Determinants of inter-regional migration in the Baltic countries.
  23. Hu, R. (2015). Competitiveness, migration, and mobility in the global city: Insights from Sydney, Australia. Economies, 3(1), 37-54. https://doi.org/10.3390/economies3010037
  24. Huggins, R., & Thompson, P. (2017). Introducing regional competitiveness and development: contemporary theories and perspectives. In Handbook of Regions and Competitiveness (pp. 1-32): Edward Elgar Publishing.
  25. Huggins, R., Izushi, H., & Thompson, P. (2013). Regional competitiveness: Theories and methodologies for empirical analysis. Journal of CENTRUM Cathedra: The Business and Economics Research Journal, 6(2), 155-172. doi:10.7835/jcc-berj-2013-0086
  26. Kotenko, S., Shvindina, H., & Heiets, I. (2021). The impact of migration on the competitiveness of the region and industry development. Paper presented at the E3S Web of Conferences.
  27. Kušar, S. (2011). The institutional approach in economic geography: An applicative view. Hrvatski geografski glasnik, 73(1.), 39-49. https://doi.org/10.21861/hgg.2011.73.01.03
  28. Lengyel, I., & Rechnitzer, J. (2013). Drivers of regional competitiveness in the Central European countries. Transition Studies Review, 20(3), 421-435. https://doi.org/10.1007/s11300-013-0294-2
  29. Lucas Jr, R. E. (1988). On the mechanics of economic development. Journal of monetary economics, 22(1), 3-42. https://doi.org/10.1016/0304-3932(88)90168-7
  30. Madhulatha, T. S. (2011). Comparison between k-means and k-medoids clustering algorithms. Paper presented at the International Conference on Advances in Computing and Information Technology.
  31. Markowitz, J. N., & Fariss, C. J. (2018). Power, proximity, and democracy: Geopolitical competition in the international system. Journal of Peace Research, 55(1), 78-93.
  32. METE, M., & ÖZBAŞ, H. (2015). The Impact of Economic Development on Regional Migration in Turkey. Zeitschrift für die Welt der Türken, 7(3).
  33. Oliinyk, O., Bilan, Y., Mishchuk, H., Akimov, O., & Vasa, L. (2021). The impact of migration of highly skilled workers on the country's competitiveness and economic growth. Montenegrin Journal of Economics, 17(3), 7-19. https://doi.org/10.14254/1800-5845/2021.17-3.1
  34. Poot, J. (2000). Reflections on local and economy-wide effects of territorial competition. In Regional competition (pp. 205-230): Springer.
  35. Poot, J. (2008). Demographic change and regional competitiveness: the effects of immigration and ageing. International Journal of Foresight and Innovation Policy, 4(1-2), 129-145.
  36. Porter, M. E. (1998). Location, clusters, and the" new" microeconomics of competition. Business economics, 33(1), 7-13.
  37. Pourahmad, A., Rahimi, h., Meshkini, A., Hataminejad, H. (2016). Explaining the Consequences of Globalism Discourse on the Pattern of Metropolises’ Territorial Governance (Case Study: Tehran Metropolis). Geographical Planning of Space, 5(18), 193-208. [in Persian]
  38. Purcell, M. (2009). Resisting neoliberalization: Communicative planning or counter-hegemonic movements? Planning theory, 8(2), 140-165.
  39. Rahimi, H. (2023). Typology of Spatial-Functional Relations between the State, Market and Society in Multi-Level Metropolitan Systems. Paper presented at the 3rd International Conference on System Thinking in Practice, Mashhad city, Iran. 1244-1259.  [in Persian]
  40. Rdusseeun, L., & Kaufman, P. (1987). Clustering by means of medoids. Paper presented at the Proceedings of the statistical data analysis based on the L1 norm conference, neuchatel, switzerland.
  41. Sadeghi, R., Esmaeili, N., & Abbasi-Shavazi, M.J. (2021). Education, Development and Internal Migration in Iran. Journal of Population Association of Iran, 16, 193-215. doi:10.22034/jpai.2021.128570.1152 [in Persian]
  42. Sadeghi R. (2022). Unemployment, Uneven Regional Development and Spatial Patterns of Internal Migration in Iran. Research of deviance and social problems, 3, 41-65. [in Persian]
  43. Storper, M. (1997). The regional world: territorial development in a global economy: Guilford press.
  44. Sundac, D., & Stumpf, G. (2016). The impact of brain drain on the competitiveness of the Croatian economy. Economic and Social Development: Book of Proceedings, 199.
  45. Vogler, M., & Rotte, R. (2000). The effects of development on migration: Theoretical issues and new empirical evidence. Journal of Population Economics, 13(3), 485-508. https://doi.org/10.1007/s001480050148
  46. Vuković, D., Jovanović, A., & Đukić, M. (2012). Defining competitiveness through the theories of new economic geography and regional economy. Journal of the Geographical Institute" Jovan Cvijic", SASA, 62(3), 49-64. https://doi.org/10.2298/IJGI1203049V
  47. Zandi-Navgran L, Sadeghi R and Askari-Nodoushan A. (2019). Spatial Structure of Inter-Provincial Migration in Iran: Application of Log-linear Models. Journal of Population Association of Iran, 14, 69-111. doi:10.22034/jpai.2019.239439 [in Persian]