Comparison of the performance of Fuzzy-Inference System and integrated Fuzzy-Inference System- Monte Carlo models for predicting the distribution of drinking water sources in different districts of Kermanshah

Document Type : Research article

Authors

1 Master, Faculty of Geography Department of Remote Sensing, University of Tehran, Iran

2 Assistant Professor, Faculty of Geography, Department of Remote Sensing, Tehran University, Iran

Abstract

Extended Abstract
 
Introduction
Shortage of high quality freshwater is one of the great challenges that human civilization is facing in the 21st century (Shiklomanov, 2000). This issue threatens the social welfare, public health and ecosystem health. On one hand, limited freshwater resources and increasing demand for this vital resource signifies water issue. On the other hand, non-uniformity of spatial and temporal distribution has complicated the management of these problems (Makhdoom, 1999). Climate change is also one of the main reason for worsening the quality and quantity of water while lowering groundwater level (Lambrakis, 2006). Therefore, good management of water resources to predict water demand for the future in different districts is needed. Accordingly, Multi Criteria Decision Making Method (MCDM) is used (Mousseau & Slowinski, 1998). The aim of this study is to compare the results of estimation of the Fuzzy Inference System and Fuzzy Inference System- Monte Carlo models for predicting drinking water demand in different districts of Kermanshah for the year 1400. Factors such as population growth, per capita water usage and urban development have been considered in order to the manage water resources and accurate planning of the Kermanshah city. This is the novelty of this research. In other words, at first the relation between distribution amount of water consumption and population distribution and after that, the relation between population distribution and the physical development of the city of Kermanshah are studied. That is according to physical development of the city, distribution amount of water consumption is determined.
Data and Methods
At first the parameters related to the research were determined by using expert opinions and previous research. The Electre method was used to reduce indicator numbers. After that Monte Carlo simulation was used for obtaining weighted indexes. Finally, for estimation of distribution of population and water demand, FIS method was employed. Ten indices affecting the population and amount of water were chosen according to previous researches. These identified parameters included slope, distance from the river, elevation, distance from pipelines water, distance from roads (roads- Avenue), a distance of the center of town, population density, land use, distance from the river. Due to existence of numerous gathered parameters, some of them were filtered as inputs for FIS model. For doing this, Electre model was considered to select more efficient indices based on the 40 experts’ opinions. Each index was weighed according to Likert scale. The most effective layer was labeled with "very importance" and the least effective layer with "little importance". For determining the index weight, Monte Carlo simulation method was used. FIS model was also employed to determine density population of districts of the city. FIS model was employed in two states: First, state as combination model in which the consequences of employed Monte Carlo method for weighting of different layers were assessed. In the second state, only FIS method was employed, because of equality in regarding index weights.
Conclusion and Discussion
Elimination of slope aspect, distance from the river and elevation comes from Electre method. It was mentioned that the Monte Carlo method is based on Saati Judgment, assigning to the accuracy of calculation (A=0/01). The value of T and N were calculated: T=%5 and N=10000. The result from FIS model and FIS-Monte Carlo model were considered to determine the amount of water that is needed for districts 1 to 3. Both models determined district 3 as the district that needs the maximum amount of water while district 1 with the minimum amount of water.
Conclusion
The evaluation of distribution of water demand for city is a very complicated issue that is influenced by a variety of parameters. These include the effect of population distribution such as natural factors, human infrastructure, policies in urban planning and urban development etc. Multi Criteria Decision Making (MCDM) method is commonly used to solve this problem. Because of high flexibility and power of their theory, fusion model are more efficient in counting complexity of problem (Shu, and Ouarda, 2008; Shahraki and Abbasian, 2014; Leyva and Fernandez, 2003; Asgharpour, 2012; Ghazanfari Rad, 2011; Rahmati et al., 2014; Sultan Panah and Farooq, 2000). So, these models are more efficient with respect to non-inclusive models. In this research two FIS and FIS-Monte Carlo methods were employed to estimate of population distribution and the amount of water demand with different results. According to the above explanation, the result of fusion model FIS-Monte Carlo is more reasonable. This reasonable result can be reported to the organizations that depend on water resources for future scheduling, management of water resources crisis.

Keywords


اصغرپور، محمدجواد؛ (1377). تصمیم‌گیری و تحقیق در عملیات، انتشارات دانشگاه تهران، تهران.
انواری، علی‌اصغر؛ حسینیان، شهامت؛ (1391). رتبه‌بندی مالی شرکت‌های بورس با روش‌های تصمیم‌گیری چندشاخصه و مدل‌های ترکیبی، شمارۀ 1، 54-31.
خدابخشی، بهناز؛ جعفری، حمیدرضا؛ (1389). کاربرد مدل تصمیم‌گیری چندمعیارۀ Electre-TRI در ارزیابی اثرات زیست‌محیطی طرح‌های توسعۀ منابع آب، آب و فاضلاب، شمارۀ 3.
دیوید، فرد ار؛ (1379). مدیریت استراتژیک، ترجمۀ علی پارسیان و محمد اعرابی، انتشارات پژوهش‌های فرهنگی، تهران.
سلطان‌پناه، ه.؛ فاروقی، ه.؛ گلابی، م.؛ (1389). به‌کارگیری و مقایسۀ تکنیک‌های تصمیم‌گیری چندشاخصه در رتبه‌بندی کشورها بر مبنای میزان توسعۀ انسانی، مجلۀ دانش و فناوری، 1(2).
عادل، سپهر؛ (1391). ایجاد سامانۀ شاخص‌های بیابان‌زایی بر اساس DPSIR (بهره‌گیری از روش فازی-تاپسیس)، مجلۀ جغرافیا و برنامه‌ریزی محیطی، شمارۀ 1.
----------؛ (1392). استفاده از روابط مونت‌کارلو در کاهش عدم اطمینان مقایسات زوجی شاخص‌های بیابان‌زایی، فصلنامۀ تحقیقات جغرافیایی، شمارۀ 4.
علی‌احمدی، علی‌رضا؛ فتح‌الله، مهدی؛ تاج‌الدین، ایرج؛ (1382). نگرشی جامع بر مدیریت استراتژیک، انتشارات تولید دانش، تهران.
غضنفری‌راد، فروغ؛ (1390). مجلۀ تحقیق در عملیات و کاربردهای آن؛ ارائۀ یک مدل ترکیبی از روش‌های تصمیم‌گیری چندمعیارۀ فازی برای تعیین محل شهرک صنعتی، شمارۀ 6.
فقیه، نظام‌الدین؛ علمداری بولی، فرشاد؛ (1386). کنترل هوشمند مواد با کنترل فازی (صنعت کامپوزیت) T انتشارات رخشید.
کریمی، محمد؛ (1388). مدل‌سازی توان اکولوژیکی سرزمین، با استفاده از منطق فازی، سنجش از دور و GIS ایران، شمارۀ اول، سال اول، ص17-38.
کوره‌پزان دزفولی، امین؛ (1384). اصول تئوری مجموعه‌های فازی، انتشارات جهاد دانشگاهی واحد صنعتی امیرکبیر.
مخدوم، مجید؛ (۱۳۷۸). شالودۀ آمایش سرزمین، انتشارات دانشگاه تهران.
ملک‌محمدی، ب.؛ کرایچیان، ر.؛ (1387). رتبه‌بندی جواب‌های مدل بهینه‌سازی چندهدفۀ بهره‌برداری از مخازن با روش Electre-TRI، مجموعه مقالات سومین کنفرانس مدیریت منابع آب ایران، تبریز، ایران.
 
Ali Ahmed, A.; Fatah, Ali; R.Tajaldin, I. (1382). Holistic approach to strategic management, knowledge Publications, Tehran.
Asgharpour, M. J. (1377). Decision and Operations Research, Tehran University Press, Tehran.
Bathrellos, G. et al. (2012). Potential suitability for urban planning and industry development using natural hazard maps and geological–geomorphological parameters, Environmental Earth Sciences66(2): 537-548
David, F. (1379). Strategic management, translation Persians, and Arabs Ali, Muhammad, Cultural Studies Publications, Tehran.
Douglas, H. (2007). How to Measure Anything: Finding the Value of Intangibles in Business p. 46, John Wiley & Sons.
Faqih, N.; Booli, A.; Farshad, (1386). Intelligent control, fuzzy control materials (composites industry), Rakhshyd publications.
George, D. (2012). Bathrellos KalliopiGaki-Papanastassiou, Potential suitability for urban planning and industry development using natural hazard maps and geological–geomorphological parameters” Environ Earth Sci 66:537–548
George, P.; Panagopoulos, George, D., Bathrellos (2012). Mapping Urban Water Demands Using Multi-CriteriaAnalysis and GIS” Water Resour Manage, 26:1347–1363.
Ghazanfari Rad, F. (1390). Presents a hybrid model of fuzzy multi-criteria decision-making methods to locate Industrial Zone, Journal of Operations Research and its Applications, No. 6.
Hoda Rahmati, S. et al. (2014). A comparison of anfis, ann, arma & multivariable regression methods for urban water-consumption forcasting, considering impacts of climate change: a case study on tehran mega city. Indian J.Sci.Res. 7 (1): 870-880, 2014.
Karimi, M. (1388). Ecological modeling capability, using fuzzy logic of remote sensing and GIS Center, the first year .pp. 17-38.
Khodabakhshi, B.; Jafar, H. (1389). Application of Multi Criteria Decision Making Electre-TRI in environmental impact assessment, water resource development projects, water and sewer, N 3.
Kore Pzan Dezful, A. (1384). The theory of fuzzy sets. Publication Amirkabir University Jihad.
Leyva, J.; Fernandez, E. (2003). A New Method for Group Decision SupportBased on ELECTRE III Methodology, www.sciencedirect.com.
Makhdoom, M. (1378). Land base of Tehran University Press.
Malek Mohammadi, B.; Kraychyan, B. (1387). Anking solutions of multi-objective optimization model, exploitation of reservoirs with Electre-TRI, Proceedings of the Third Conference on Water Resources Management in Iran, Tabriz, Iran.
Mousseau, V.; Slowinski, R. (1998). Inferring an Electre-TRI model from assigement examples, Journal of Global optimization, 12: 157-174.
Panagopoulos, G.; Lambrakis, N.; (2006). The contribution of time series analysis to the study of the hydrody-namic characteristics of the karst systems, application on two typical karst aquifers of Greece (Trifilia SaatyT. the analytic hierarchy process, McGraw-Hill, New York, 1980.
Sepehr, A. (1391). Causing desertification of the system parameters based on the DPSIR (use of fuzzy-TOPSIS method), Journal of Geography and Environmental Planning, No. 1.
Sepehr, A. (1392). Using pairwise comparisons of Monte Carlo in reducing uncertainty parameters Byabanzayy, Geographical Research Quarterly, No. 4.
Shahraki, J. Abbasian (2014). Application of artificial neural network rbf and gmdh forecasting short- term water demand, Journal of Multidisciplinary Research, Vol. 3 Issue 5ISSN 2278-0637, 1-11.
Shiklomanov, I. A.; (2000). Appraisal and assessment of world water resources, J. Water International, 25(1), 11-32.
Shu, C.; Ouarda, T. B. M. J.; (20080. Regional flood frequency analysis atungauged sites using the adaptiveneuro-fuzzy inference system, Journal of Hydrology 349, 31-43.
Sultan Panah, E.; Farooq-e.; Pears, D. (1389). Application and comparison of techniques for multi attribute decision making based on the ranking of countries in terms of human development, Journal of Science and Technology, 1 (2).
Zarghami, M. et al. (2008). Multi-criteria Decision Making for Integrated Urban Water Management, Water Resources Management, 22(8): 1017-1029.