Document Type : Research article
Author
Assistant professor of Remote Sensing, Remote Sensing and GIS Department, Faculty of Geography, University of Tehran
Abstract
Keywords
10. Jensen, J. R., and Lulla, K., 1987, Introductory Digital Image Processing: A Remote Sensing Perspective.
11. Jiang, L., Liao, M., Lin, H., and Yang, L., 2009, Synergistic Use of Optical and Insar Data for Urban Impervious Surface Mapping: A Case Study In Hong Kong, International Journal of Remote Sensing, No. 30, PP. 2781-2796.
12. Lee, J. S., Jurkevich, L., Dewaele, P., Wambacq, P., and Oosterlinck, A., 1994, Speckle Filtering of Synthetic Aperture Radar Images: A Review, Remote Sensing Reviews, No. 8, PP. 313-340.
13. Leinenkugel, P., Esch, T., ans Kuenzer, C., 2011, Settlement Detection and Impervious Surface Estimation in the Mekong Delta Using Optical and SAR Remote Sensing Data, Remote Sensing of Environment, No. 115, PP. 3007-3019.
14. Li, G., Lu, D., Moran, E., Dutra, L., and Batistella, M., 2012, A Comparative Analysis of ALOS PALSAR L-Band and Radarsat-2 C-Band Data for Land-Cover Classification in a Tropical Moist Region, ISPRS Journal of Photogrammetry and Remote Sensing, No. 70, PP. 26-38.
15. Longepe, N., Rakwatin, P., Isoguchi, O., Shimada, M., Uryu, Y., and Yulianto, K., 2011, Assessment of Alos Palsar 50 M Orthorectified Fbd Data for Regional Land Cover Classification By Support Vector Machines, Ieee Transactions on Geoscience and Remote Sensing, No. 49, PP. 2135-2150.
16. Ma, Q., He, C., Wu, J., Liu, Z., Zhang, Q., and Sun, Z., 2014, Quantifying Spatiotemporal Patterns of Urban Impervious Surfaces in China: An Improved Assessment Using Nighttime Light Data, Landscape and Urban Planning, No. 130, PP. 36-49.
17. Mountrakis, G., Im, J., and Ogole, C., 2011, Support Vector Machines in Remote Sensing: A Review. ISPRS Journal of Photogrammetry and Remote Sensing, No. 66, PP. 247-259.
18. Qin, Y., Xiao, X., Dong, J., Chen, B., Liu, F., Zhang, G., Zhang, Y., Wang, J., and Wu, X., 2017, Quantifying Annual Changes in Built-Up Area in Complex Urban-Rural Landscapes From Analyses of PALSAR and Landsat Images, ISPRS Journal of Photogrammetry and Remote Sensing, No. 124, PP. 89-105.
19. Qin, Y., Xiao, X., Dong, J., Zhang, G., Shimada, M., Liu, J., Li, C., Kou, W., and Moore Iii, B. 2015, Forest Cover Maps of China In 2010 From Multiple Approaches and Data Sources: PALSAR, Landsat, MODIS, FRA, and NFI, ISPRS Journal of Photogrammetry and Remote Sensing, No. 109, PP. 1-16.
20. Shimada, M., Isoguchi, O., Tadono, T., Higuchi, R., and Isono, K., Palsar Calval Summary and Update 2007, 2007 Ieee International Geoscience and Remote Sensing Symposium, 2007. Ieee, PP. 3593-3596.
21. Statistical Center of Iran, I, 2016, Population and Housing Censuses [Online]. Available: https://www.amar.org.ir/english/population-and-housing-censuses [accessed 2019.07.01].
22. Walker, W. S., Stickler, C. M., Kellndorfer, J. M., Kirsch, K. M., and Nepstad, D. C., 2010, Large-Area Classification and Mapping of Forest and Land Cover in the Brazilian Amazon: A Comparative Analysis of Alos/Palsar and Landsat Data Sources, Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, No. 3, PP. 594-604.
23. Weng, Q., 2012, Remote Sensing of Impervious Surfaces in the Urban Areas: Requirements, Methods, and Trends, Remote Sensing of Environment, No. 117, PP. 34-49.
24. Weng, Q., and HU, X., 2008, Medium Spatial Resolution Satellite Imagery for Estimating and Mapping Urban Impervious Surfaces Using Lsma and ANN, Ieee Transactions on Geoscience and Remote Sensing, No. 46, PP. 2397-2406.
25. WU, J., and Thompson, J., 2013, Quantifying Impervious Surface Changes Using Time Series Planimetric Data From 1940 to 2011 in Four Central Iowa Cities, USA, Landscape and Urban Planning, No. 120, PP. 34-47.
26. Yang, L., Huang, C., Homer, C. G., Wylie, B. K., and Coan, M. J., 2003, An Approach for Mapping Large-Area Impervious Surfaces: Synergistic Use of Landsat-7 ETM+ and High Spatial Resolution Imagery. Canadian Journal of Remote Sensing, No. 29, PP. 230-240.
27. Yang, L., Jiang, L., Lin, H., and Liao, M., 2009, Quantifying Sub-Pixel Urban Impervious Surface Through Fusion of Optical and Insar Imagery, Giscience and Remote Sensing, Vol. 46, No. 2, PP.161-171.
28. Zaeri Amirani, A., Sofyanian, A., 2012, Preparation of Infiltration Levels Mapping As An Environmental Indicator, Scientific- Research Quarterly of Geographical Data (Sepehr), Vol. 21, No. 83, PP. 65-69.
29. Zhang, H., Lin, H., and Wang, Y., 2018, A New Scheme for Urban Impervious Surface Classification From SAR Images, ISPRS Journal of Photogrammetry and Remote Sensing, No. 139, PP. 103-118.
30. Zhang, H., Zhang, Y., and Lin, H., 2012, A Comparison Study of Impervious Surfaces Estimation Using Optical and SAR Remote Sensing Images, International Journal of Applied Earth Observation and Geoinformation, No. 18, PP. 148-156.
31. Zhang, J., Pu, R., Yuan, L., Wang, J., Huang, W., and Yang, G., 2014a, Monitoring Powdery Mildew of Winter Wheat by Using Moderate Resolution Multi-Temporal Satellite Imagery, Plos One, 9, E93107.
Zhang, Y., Zhang, H., and Lin, H., 2014b, Improving the Impervious Surface Estimation with Combined Use of Optical and SAR Remote Sensing Images, Remote Sensing of Environment, No. 141, PP. 155-167.