عطارچی، سارا (1398). «کارایی شاخصهای راداری در استخراج سطوح نفوذناپذیر شهری با استفاده از تصویر رادار تمام پلاریمتریک»، پژوهشهای جغرافیای برنامهریزی شهری، شمارة 4، صص 837-854.
Arnold Jr, C. L., & Gibbons, C. J. (1996). Impervious Surface Coverage: The Emergence of a Key Environmental Indicator. Journal of the American Planning Association, 62(2), 243-258.
Attarchi, S. (2019). Efficiency Evaluation of SAR-Derived Indices in Urban Impervious Surfaces Extraction Using Full Polarimetric Image. Geographical Urban Planning Research, 7(4), 837-854. (In Persian)
Ban, Y., Jacob, A., & Gamba, P. (2015). Spaceborne SAR Data for Global Urban Mapping at 30 M Resolution Using a Robust Urban Extractor. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 28-37.
Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., & Zhang, W. (2015). Global Land Cover Mapping at 30 M Resolution: A POK-Based Operational Approach. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 7-27.
Civco, D. L., Hurd, J. D., Wilson, E. H., Arnold, C. L., & Prisloe Jr, M. P. (2002). Quantifying and Describing Urbanizing Landscapes in the Northeast United States. Photogrammetric Engineering and Remote Sensing, 68(10), 1083-1090.
Corbane, C., Faure, J. F., Baghdadi, N., Villeneuve, N., & Petit, M. (2008). Rapid Urban Mapping Using SAR/Optical Imagery Synergy. Sensors, 8(11), 7125-7143.
Deng, C., & Wu, C. (2012). BCI: A Biophysical Composition Index for Remote Sensing f Urban Environments. Remote Sensing Of Environment, 127, 247-259.
Goldblatt, R., You, W., Hanson, G., & Khandelwal, A. K. (2016). Detecting the Boundaries of Urban Areas in India: A Dataset for Pixel-Based Image Classification in Google Earth Engine. Remote Sensing, 8(8), 634.
Gomez-Chova, L., Fernández-Prieto, D., Calpe, J., Soria, E., Vila, J., & Camps-Valls, G. (2006). Urban Monitoring Using Multi-Temporal SAR and Multi-Spectral Data. Pattern Recognition Letters, 27(4), 234-243.
Haas, J., & Ban, Y. (2017). Sentinel-1A SAR and Sentinel-2A MSI Data Fusion for Urban Ecosystem Service Mapping. Remote Sensing Applications: Society and Environment, 8, 41–53.
Hagolle, O., Huc, M., Pascual, D. V., & Dedieu, G. (2010). A Multi-Temporal Method for Cloud Detection, Applied To FORMOSAT-2, Venµs, LANDSAT and SENTINEL-2 Images. Remote Sensing Of Environment, 114(8), 1747–1755.
Hansen, M. C., & Loveland, T. R. (2012). A Review of Large Area Monitoring of Land Cover Change Using Landsat Data. Remote Sensing of Environment, 122, 66–74.
Hodgson, M. E., Jensen, J. R., Tullis, J. A., Riordan, K. D., & Archer, C. M. (2003). Synergistic Use of Lidar And Color Aerial Photography for Mapping Urban Parcel Imperviousness. Photogrammetric Engineering & Remote Sensing, 69(9), 973–980.
Huang, H., Chen, Y., Clinton, N., Wang, J., Wang, X., Liu, C., & Zhu, Z. (2017). Mapping Major Land Cover Dynamics in Beijing Using All Landsat Images in Google Earth Engine. Remote Sensing of Environment, 202, 166–176.
Im, J., Lu, Z., Rhee, J., & Quackenbush, L. J. (2012). Impervious Surface Quantification Using a Synthesis of Artificial Immune Networks and Decision/Regression Trees from Multi-Sensor Data. Remote Sensing of Environment, 117, 102–113.
Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geoscience and Remote Sensing Letters, 14(5), 778–782.
Li, G., Lu, D., Moran, E., & Hetrick, S. (2013). Mapping Impervious Surface Area in the Brazilian Amazon Using Landsat Imagery. Giscience & Remote Sensing, 50(2), 172–183.
Liu, C., Shao, Z., Chen, M., & Luo, H. (2013). MNDISI: A Multi-Source Composition Index for Impervious Surface Area Estimation at the Individual City Scale. Remote Sensing Letters, 4(8), 803–812.
Lu, D., & Weng, Q. (2004). Spectral Mixture Analysis of the Urban Landscape in Indianapolis with Landsat ETM+ Imagery. Photogrammetric Engineering & Remote Sensing, 70(9), 1053–1062.
Matgen, P., Schumann, G., Henry, J. B., Hoffmann, L., & Pfister, L. (2007). Integration of SAR-Derived River Inundation Areas, High-Precision Topographic Data and a River Flow Model toward Near Real-Time Flood Management. International Journal of Applied Earth Observation and Geoinformation, 9(3), 247–263.
Patel, N. N., Angiuli, E., Gamba, P., Gaughan, A., Lisini, G., Stevens, F. R., & Trianni, G. (2015). Multitemporal Settlement and Population Mapping from Landsat Using Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 35, 199–208.
Pavanelli, J. A. P., Santos, J. R. D., Galvão, L. S., Xaud, M., & Xaud, H. A. M. (2018). PALSAR-2/ALOS-2 and OLI/LANDSAT-8 Data Integration for Land Use and Land Cover Mapping in Northern Brazilian Amazon. Boletim De Ciências Geodésicas, 24(2), 250–269.
Pesaresi, M., Huadong, G., Blaes, X., Ehrlich, D., Ferri, S., Gueguen, L., & Marin-Herrera, M. A. (2013). A Global Human Settlement Layer from Optical HR/VHR RS Data: Concept and First Results. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(5), 2102–2131.
Potin, P., Rosich, B., Grimont, P., Miranda, N., Shurmer, I., O'Connell, A., & Krassenburg, M. (2016). Sentinel-1 Mission Status. In (Eds.), Sentinel-1 Mission Status. Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar (pp. 1–6). Hamburg, Germany: VDE VERLAG GMBH.
Rosin, P. L. (2001). Unimodal Thresholding. Pattern Recognition, 34(11), 2083–2096.
Schneider, A., Friedl, M. A., & Potere, D. (2010). Mapping Global Urban Areas Using MODIS 500-M Data: New Methods and Datasets Based on ‘Urban Ecoregions’. Remote Sensing of Environment, 114(8), 1733–1746.
Seto, K. C., Fragkias, M., Güneralp, B., & Reilly, M. K. (2011). A Meta-Analysis of Global Urban Land Expansion. Plos One, 6(8), E23777.
Shao, Y., Li, G. L., Guenther, E., & Campbell, J. B. (2015). Evaluation of Topographic Correction on Subpixel Impervious Cover Mapping with CBERS-2B Data. IEEE Geoscience and Remote Sensing Letters, 12(8), 1675–1679.
Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A., & Skakun, S. (2017). Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping. Frontiers in Earth Science, 5, 17.
Shen, X., Wang, D., Mao, K., Anagnostou, E., & Hong, Y. (2019). Inundation Extent Mapping by Synthetic Aperture Radar: A Review. Remote Sensing, 11(7), 879.
Sun, Z., Guo, H., Li, X., Lu, L., & Du, X. (2011). Estimating Urban Impervious Surfaces from Landsat-5 TM Imagery Using Multilayer Perceptron Neural Network and Support Vector Machine. Journal of Applied Remote Sensing, 5(1), 053501.
Sun, Z., Xu, R., Du, W., Wang, L., & Lu, D. (2019). High-Resolution Urban Land Mapping in China From Sentinel 1A/2 Imagery Based on Google Earth Engine. Remote Sensing, 11(7), 752.
Sun, Z., Zhao, X., Wu, M., & Wang, C. (2019). Extracting Urban Impervious Surface From Worldview-2 and Airborne Lidar Data Using 3D Convolutional Neural Networks. Journal of the Indian Society of Remote Sensing, 47(3), 401–412.
Wang, Z., Gang, C., Li, X., Chen, Y., & Li, J. (2015). Application of a Normalized Difference Impervious Index (NDII) to Extract Urban Impervious Surface Features Based on Landsat TM Images. International Journal of Remote Sensing, 36(4), 1055–1069.
Weng, Q. (2012). Remote Sensing of Impervious Surfaces in the Urban Areas: Requirements, Methods, and Trends. Remote Sensing of Environment, 117, 34–49.
Weng, Q., & Hu, X. (2008). Medium Spatial Resolution Satellite Imagery for Estimating and Mapping Urban Impervious Surfaces Using LSMA and ANN. IEEE Transactions on Geoscience and Remote Sensing, 46(8), 2397–2406.
Weng, Q., Hu, X., & Liu, H. (2009). Estimating Impervious Surfaces Using Linear Spectral Mixture Analysis with Multitemporal ASTER Images. International Journal of Remote Sensing, 30(18), 4807–4830.
Wu, C., & Murray, A. T. (2003). Estimating Impervious Surface Distribution by Spectral Mixture Analysis. Remote Sensing of Environment, 84(4), 493–505.
Wu, M., Zhao, X., Sun, Z., & Guo, H. (2019). A Hierarchical Multiscale Super-Pixel-Based Classification Method for Extracting Urban Impervious Surface Using Deep Residual Network from Worldview-2 and Lidar Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(1), 210–222.
Xian, G., & Homer, C. (2010). Updating the 2001 National Land Cover Database Impervious Surface Products to 2006 Using Landsat Imagery Change Detection Methods. Remote Sensing of Environment, 114(8), 1676–1686.
Xu, H. (2010). Analysis of Impervious Surface and Its Impact on Urban Heat Environment Using the Normalized Difference Impervious Surface Index (NDISI). Photogrammetric Engineering & Remote Sensing, 76(5), 557–565.
Yang, L., Huang, C., Homer, C. G., Wylie, B. K., & Coan, M. J. (2003). An Approach for Mapping Large-Area Impervious Surfaces: Synergistic Use of Landsat-7 ETM+ and High Spatial Resolution Imagery. Canadian Journal of Remote Sensing, 29(2), 230–240.
Zhang, C., Sargent, I., Pan, X., Li, H., Gardiner, A., Hare, J., & Atkinson, P. M. (2018). An Object-Based Convolutional Neural Network (OCNN) for Urban Land Use Classification. Remote Sensing of Environment, 216, 57–70.
Zhang, H., Zhang, Y., & Lin, H. (2012). A Comparison Study of Impervious Surfaces Estimation Using Optical and SAR Remote Sensing Images. International Journal of Applied Earth Observation and Geoinformation, 18, 148–156.
Zhang, Q., & Seto, K. C. (2011). Mapping Urbanization Dynamics at Regional and Global Scales Using Multi-Temporal DMSP/OLS Nighttime Light Data. Remote Sensing of Environment, 115(9), 2320–2329.
Zhang, Y., Zhang, H., & Lin, H. (2014). Improving the Impervious Surface Estimation with Combined Use of Optical and SAR Remote Sensing Images. Remote Sensing Of Environment, 141, 155–167.