Document Type : Research article
Authors
1 MSc Student in Remote Sensing and GIS, University of Tehran, Faculty of Geography, Department of Remote Sensing and GIS, Iran
2 Assistant Professor of Remote Sensing and GIS, University of Tehran, Faculty of Geography, Department of Remote Sensing and GIS, Iran
Abstract
Keywords
10. ENVI, 2009. Atmospheric correction module: QUAC and FLAASH User’s Guide, Available online: _www.exelisvis.com/portals/0/pdfs/envi/Flaash Module.pdf_(accessed 19 December 2014).
11. Estoque, R. C., Estoque, R. S., & Murayama, Y. (2012). Prioritizing Areas for Rehabilitation by Monitoring Change in Barangay-Based Vegetation Cover. ISPRS International Journal of Geo-Information, 1(1), 46–68. https://doi.org/10.3390/ijgi1010046
12. Estoque, R. C., & Murayama, Y. (2013). Landscape pattern and ecosystem service value changes: Implications for environmental sustainability planning for the rapidly urbanizing summer capital of the Philippines. Landscape and Urban Planning, 116, 60–72. https://doi.org/10.1016/j.landurbplan.2013.04.008
13. Estoque, R., & Murayama, Y. (2014). A geospatial approach for detecting and characterizing non-stationarity of land- change patterns and its potential effect on modeling accuracy. GIScience & Remote Sensing, 51(June 2014), 239–252. https://doi.org/10.1080/15481603.2014.908582
14. Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185–201. https://doi.org/10.1016/S0034-4257(01)00295-4
15. Ganeshkumar.B, & Mohan.M.,2014,Urban Sprawl Spatial Modelingusing SLEUTH Model,International Journal of Geospatial Engineering and Technology Vol.1,No.1, pp.22 – 28.
16. Gao, B. C. (1996). NDWI - A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. https://doi.org/10.1016/S0034-4257(96)00067-3
17. Ginkel,V.H.,2010,Sustainable Urban Futures:Challenges And Opportunities. Paper Presented at School of Humanities, Universiti Sains Malaysia, Penang.May 17, 2010.
18. Han, J., Hayashi, Y., Cao, X., & Imura, H. (2009). Application of an integrated system dynamics and cellular automata model for urban growth assessment: A case study of Shanghai, China. Landscape and Urban Planning, 91(3), 133–141. https://doi.org/10.1016/j.landurbplan.2008.12.002
19. Hejazi Zadeh, Z; Parvin, N. (2009). Study of temperature and precipitation variations in Tehran over the last half century, Biannual Journal of Urban Ecology Researches, pp. 56-43, [in Persian].
20. Jaeger, J. A. G., & Schwick, C. (2014). Improving the measurement of urban sprawl: Weighted Urban Proliferation (WUP) and its application to Switzerland. Ecological Indicators, 38, 294–308. https://doi.org/10.1016/j.ecolind.2013.11.022
21. Jiang, G., Ma, W., Qu, Y., Zhang, R., & Zhou, D. (2016). How does sprawl differ across urban built-up land types in China? A spatial-temporal analysis of the Beijing metropolitan area using granted land parcel data. Cities, 58, 1–9. https://doi.org/10.1016/j.cities.2016.04.012
22. Kawamura, M., Jayamanna, S., & Tsujiko, Y. (1996). Relation between social and environmental conditions in Colombo Sri Lanka and the urban index estimated by satellite remote sensing data. International Archives of Photogrammetry and Remote Sensing.
23. Kong, F., Yin, H., Nakagoshi, N., & James, P. (2012). Simulating urban growth processes incorporating a potential model with spatial metrics. Ecological Indicators, 20, 82–91. https://doi.org/10.1016/j.ecolind.2012.02.003
24. Laben, C.A. & Brower, B.V. 2000. Process for enhancing the spatial resolution of mul-tispectral imagery using pan-sharpening. US Patent 6011875, Eastman KodakCompany, Rochester, N.Y.
25. Li, W., Bai, Y., Chen, Q., He, K., Ji, X., & Han, C. (2014). Discrepant impacts of land use and land cover on urban heat islands: A case study of Shanghai, China. Ecological Indicators, 47, 171–178. https://doi.org/10.1016/j.ecolind.2014.08.015
26. Li, W., Du, Z., Ling, F., Zhou, D., Wang, H., Gui, Y., … Zhang, X. (2013). A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI. Remote Sensing, 5(11), 5530–5549. https://doi.org/10.3390/rs5115530
27. Longley, P. (2002). Geographical Information Systems: will developments in urban remote sensing and GIS lead to “better” urban geography? Progress in Human Geography, 26(2), 231–239. https://doi.org/10.1191/0309132502ph366pr
28. Matthias, B., Martin, H., 2003. Mapping imperviousness using NDVI and linearspectral unmixing of ASTER data in the Cologne-Bonn region (Germany). In: Proceedings of the SPIE 10th International Symposium on Remote Sensing, 8–12September 2003, pp. 274–284, 5239.
29. Masek, J. G., Lindsay, F. E., & Goward, S. N. (2000). Dynamics of urban growth in the Washington DC metropolitan area, 1973-1996, from Landsat observations. International Journal of Remote Sensing, 21(18), 3473–3486. https://doi.org/10.1080/014311600750037507
30. McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
31. Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66. https://doi.org/10.1109/TSMC.1979.4310076
32. Polydoros, A., & Cartalis, C. (2015). Use of Earth Observation based indices for the monitoring of built-up area features and dynamics in support of urban energy studies. Energy {&} Buildings, 98, 92–99. https://doi.org/10.1016/j.enbuild.2014.09.060
33. Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., 1973. Monitoring vegetation sys-tems in the Great Plains with ERTS. In: Third ERTS Symposium, NASA SP-351 I,pp. 309–317.
34. Seto, K. C., Güneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 109(40), 16083–16088. https://doi.org/10.1073/pnas.1211658109
35. Thanapura, P., Helder, D. L., Burckhard, S., Warmath, E., O’Neill, M., & Galster, D. (2006). Mapping urban land cover using QuickBird NDVI image and GIS spatial modeling for runoff coefficient determination. Annual Conference of the American Society for Photogrammetry and Remote Sensing 2006: Prospecting for Geospatial Information Integration, ASPRS 2006, 3(1), 1421–1432. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84869030547&partnerID=40&md5=91481ffad2567b9cef1320833023f2c6
36. Thapa, R. B., & Murayama, Y. (2011). Urban growth modeling of Kathmandu metropolitan region, Nepal. Computers, Environment and Urban Systems, 35(1), 25–34. https://doi.org/10.1016/j.compenvurbsys.2010.07.005
37. USGS, 2006. Multi-resolution Land Characteristics 2001 (MRLC2001) ImageProcessing Procedure, Available online: _http://landcover.usgs.gov/pdf/image preprocessing.pdf_ (accessed: 19 December 2014).
38. USGS, 2013a. Using the USGS Landsat 8 Product, Available online:_http://landsat.usgs.gov/Landsat8 Using Product.php_ (accessed: 19 December2014).
39. USGS, 2013b. September 27, 2013—Landsat 7 Thermal Band CalibrationUpdate, Available online: _http://landsat.usgs.gov/science L7 Cal Notices.php_(accessed: 19 December 2014).
40. United Nations. (2007). World Urbanization Prospects The 2007 Revision Highlights. Desa, ESA/P/WP/2(4), 883. https://doi.org/10.2307/2808041
41. Weng, Q. (2012). Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sensing of Environment, 117, 34–49. https://doi.org/10.1016/j.rse.2011.02.030
42. Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467–483. https://doi.org/10.1016/j.rse.2003.11.005
43. Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179
44. Xu, H. (2008). A new index for delineating built‐up land features in satellite imagery. International Journal of Remote Sensing, 29(14), 4269–4276. https://doi.org/10.1080/01431160802039957
45. Xu, H. (2010). Analysis of Impervious Surface and its Impact on Urban Heat Environment using the Normalized Difference Impervious Surface Index (NDISI). Photogrammetric Engineering & Remote Sensing, 76(5), 557–565. https://doi.org/10.14358/PERS.76.5.557
46. Xu, H., Huang, S., & Zhang, T. (2013). Built-up land mapping capabilities of the ASTER and Landsat ETM+ sensors in coastal areas of southeastern China. Advances in Space Research, 52(8), 1437–1449. https://doi.org/10.1016/j.asr.2013.07.026
47. Zeng, C., Liu, Y., Stein, A., & Jiao, L. (2015). International Journal of Applied Earth Observation and Geoinformation Characterization and Spatial Modeling of Urban Sprawl in the Wuhan Metropolitan Area , China. International Journal of Applied Earth Observations and Geoinformation, 34, 10–24. https://doi.org/10.1016/j.jag.2014.06.012
48. Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594. https://doi.org/10.1080/01431160304987
49. Zhang, Y., Odeh, I. O. A., & Han, C. (2009). Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. International Journal of Applied Earth Observation and Geoinformation, 11(4), 256–264. https://doi.org/10.1016/j.jag.2009.03.001