Document Type : Research article
Authors
1 MA Student in Remote Sensing and GIS, Faculty of Geography, Tehran University, Iran
2 Assistant Professor of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Iran
Abstract
Keywords
10. Daz, B. S., Guilan, A. GH., & Khavarian, H. 2016. Land cover changes in Gorgan city using Landsat satellite images. First International Conference on Water, Environment and Sustainable Development, Ardebil, University of Mohaghegh Ardabili.
11. Ding, H., and Shi, W. 2013. Land-use/land-cover change and its influence on surface temperature: a case study in Beijing City. International Journal of Remote Sensing, 34(15): pp. 5503-5517.
12. Effat, H. A., and Hassan, O. A. K. 2014. Change detection of urban heat islands and some related parameters using multi-temporal Landsat images; a case study for Cairo city, Egypt. Urban Climate, 10: pp. 171-188.
13. Firozjaei, M. K., Kiavarz, M., Alavipanah, S. K., Lakes, T., & Qureshi, S. 2018. Monitoring and forecasting heat island intensity through multi-temporal image analysis and cellular automata-Markov chain modelling: A case of Babol city, Iran. Ecological Indicators, 91, 155-170.
14. Gago, E. J., Roldan, J., Pacheco-Torres, R., and Ordoñez, J. 2013. The city and urban heat islands: A review of strategies to mitigate adverse effects. Renewable and Sustainable Energy Reviews, 25: pp. 749-758.
15. Giannini, M. B., Belfiore, O. R., Parente, C., and Santamaria, R. 2015. Land Surface Temperature from Landsat 5 TM images: comparison of different methods using airborne thermal data. Journal of Engineering Science and Technology Review, 8(3): pp 83-90.
16. Gu, B., and Sheng, V. S. 2017. A Robust Regularization Path Algorithm for $\nu $-Support Vector Classification. IEEE Transactions on neural networks and learning systems, 28(5), 1241-1248.
17. Huang, C., Davis, L. S., and Townshend, J. R. G. 2002. An assessment of support vector machines for land cover classification. International Journal of remote sensing, 23(4): pp. 725-749.
18. Hu, Y., and Jia, G. 2010. Influence of land use change on urban heat island derived from multi‐sensor data. International Journal of Climatology, 30(9): pp. 1382-1395.
19. Jiang, J., and Tian, G. 2010. Analysis of the impact of land use/land cover change on land surface temperature with remote sensing. Procedia environmental sciences, 2: pp. 571-575.
20. Jiménez‐Muñoz, J. C., & Sobrino, J. A. 2003. A generalized single‐channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research: Atmospheres, 108(D22).
21. Kato, S., and Yamaguchi, Y. 2005. Analysis of urban heat-island effect using ASTER and ETM+ Data: Separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux. Remote Sensing of Environment, 99(1): pp. 44-54.
22. Kavzoglu, T., and Colkesen, I. 2009. A kernel functions analysis for support vector machines for land cover classification. International Journal of Applied Earth Observation and Geoinformation, 11(5): pp. 352-359.
23. Landsat Project Science Office, 2002. Landsat 7 Science Data User’s Handbook. Goddard Space Flight Center, NASA, Washington, DC, cited from: http://ltpwww.gsfc.nasa.gov /IAS/handbook/handbook_toc.html.
24. Latif, M. S. 2014. Land Surface Temperature Retrival of Landsat-8 Data Using Split Window Algorithm-A Case Study of Ranchi District. Int J Eng Dev Res (IJEDR), 2: pp. 3840-3849.
25. Li, J., and Zhao, H. M. 2003. Detecting urban land-use and land-cover changes in Mississauga using Landsat TM images. Journal of Environmental Informatics, 2(1): pp. 38-47.
26. Li, X., Li, W., Middel, A., Harlan, S. L., Brazel, A. J., and Turner, B. L. 2016. Remote sensing of the surface urban heat island and land architecture in Phoenix, Arizona: Combined effects of land composition and configuration and cadastral–demographic–economic factors. Remote Sensing of Environment, 174: pp. 233-243.
27. Lu, D., and Weng, Q. 2005. Urban classification using full spectral information of Landsat ETM+ imagery in Marion County, Indiana. Photogrammetric Engineering & Remote Sensing, 71(11): pp. 1275-1284.
28. Mantero, P., Moser, G., and Serpico, S. B. 2005. Partially supervised classification of remote sensing images through SVM-based probability density estimation. IEEE Transactions on Geoscience and Remote Sensing, 43(3): pp. 559-570.
29. Matkan, A., Nohegar, A., Mirbagheri, B., Torkchin, N. 2014. Assessment relations of land use in heat islands using time series ASTER sensor data (Case study: Bandar Abbas city). Journal of RS and GIS for Natural Resources, 5(4), 1-14.
30. Mirsanjari, M., Abedian, S. 2018. Investigation of Demographic Change and its Impact on Land Use Changes (Case Study: Gorgan City). Environmental Researches, 8(16), 3-14.
31. Molashahi, S., Sadeghi, A., Kamyab, H. R., & Lotfi, Y. 2015. Detection of land use change and land cover (case study: Gorgan). The first national conference on modern topics in Civil Engineering, Bandar Gaz, Islamic Azad University of Bandar Gaz.
32. Mountrakis, G., Im, J., and Ogole, C. 2011. Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3): pp. 247-259.
33. Nadizadeh Shorabeh, S., Hamzeh, S., & Afshari, S. Y. 2017, Spatial-temporal monitoring of urban heat island changes and its relation to land use and land cover changes by integrating optical and thermal data from remote sensing. Geomatics National Conference.
34. Nemmour, H., and Chibani, Y. 2006. Multiple support vector machines for land cover change detection: An application for mapping urban extensions. ISPRS Journal of Photogrammetry and Remote Sensing, 61(2): pp. 125-133.
35. Otukei, J. R., and Blaschke, T. 2010. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. International Journal of Applied Earth Observation and Geoinformation, 12: pp. S27-S31.
36. Pal, S., and Ziaul, S. 2017. Detection of land use and land cover change and land surface temperature in English Bazar urban centre. The Egyptian Journal of Remote Sensing and Space Science, 20(1): pp. 125-145.
37. Qin, Z., Karnieli, A., and Berliner, P. 2001. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 22(18): pp. 3719-3746.
38. Rehman, Z. U., Kazmi, S. J. H., Khanum, F., and Samoon, Z. A. 2015. Analysis of Land Surface Temperature and NDVI Using Geo-Spatial Technique: A Case Study of Keti Bunder, Sindh, Pakistan. Journal of Basic and Applied Sciences, 11: pp. 514-527.
39. Rose, A. L., and Devadas., M. D. 2009. Analysis of land surface temperature and land use/land cover types using remote sensing imagary a case inchennal city, india. The seventh International Conference on Urban Climate, 29 June - 3 July 2009, Yokohama, Japan.
40. Rumpf, T., Mahlein, A. K., Steiner, U., Oerke, E. C., Dehne, H. W., and Plümer, L. 2010. Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Computers and Electronics in Agriculture, 74(1): pp. 91-99.
41. Seto, K. C., Woodcock, C. E., Song, C., Huang, X., Lu, J., & Kaufmann, R. K. 2002. Monitoring land-use change in the Pearl River Delta using Landsat TM. International Journal of Remote Sensing, 23(10), 1985-2004.
42. Sobrino, J. A., Jiménez-Muñoz, J. C., and Paolini, L. 2004. Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of environment, 90(4): pp. 434-440.
43. Sobrino, J. A., Jiménez-Muñoz, J. C., Sòria, G., Romaguera, M., Guanter, L., Moreno, J., and Martínez, P. 2008. Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Transactions on Geoscience and Remote Sensing, 46(2): pp. 316-327.
44. Srivastava, P. K., Majumdar, T. J., and Bhattacharya, A. K. 2009. Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data. Advances in space research, 43(10): pp. 1563-1574.
45. United Nations. 2010. World urbanization prospects: The 2009 revision population database. http://esa.un.org/unpd/wup/index.htm.
46. Valor, E., and Caselles, V. 1996. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote sensing of Environment, 57(3): pp. 167-184.
47. Vlassova, L., Perez-Cabello, F., Nieto, H., Martín, P., Riaño, D., and de la Riva, J. 2014. Assessment of methods for land surface temperature retrieval from Landsat-5 TM images applicable to multiscale tree-grass ecosystem modeling. Remote Sensing, 6(5): pp. 4345-4368.
48. Wang, F., Qin, Z., Song, C., Tu, L., Karnieli, A., and Zhao, S. 2015. An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Remote Sensing, 7(4): pp. 4268-4289.
49. Weng, Q., Liu, H., and Lu, D. 2007. Assessing the effects of land use and land cover patterns on thermal conditions using landscape metrics in city of Indianapolis, United States. Urban ecosystems, 10(2): pp. 203-219.
50. Wukelic, G. E., Gibbons, D. E., Martucci, L. M., and Foote, H. P. 1989. Radiometric calibration of Landsat Thematic Mapper thermal band. Remote Sensing of Environment, 28: pp. 339-347.
51. Xian, G., and Crane, M. 2006. An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data. Remote Sensing of environment, 104(2): pp. 147-156.
52. Yuan, F., Sawaya, K. E., Loeffelholz, B. C., & Bauer, M. E. 2005. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote sensing of Environment, 98(2-3), 317-328.
53. Zareie, S., Khosravi, H., and Nasiri, A. 2016. Derivation of land surface temperature from Landsat Thematic Mapper (TM) sensor data and analyzing relation between land use changes and surface temperature. Manuscript under review for journal Solid Earth, 22: pp. 1-8.
54. Zheng, B., Myint, S. W., Thenkabail, P. S., and Aggarwal, R. M. 2015. A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. International Journal of Applied Earth Observation and Geoinformation, 34: pp. 103-112.