تحلیل احساسات کاربرانِ پارک‌های شهری مبتنی بر داده‌های فضای مجازی؛ با بهره‌گیری از روش‌های مدل‌گرا و غیرمدل‌گرا مطالعه موردی: پارک ملت تهران

نوع مقاله : پژوهشی - کاربردی

نویسندگان

1 گروه طراحی شهری، دانشکده معماری و شهرسازی، دانشگاه هنر ایران، تهران، ایران

2 گروه طراحی شهری، دانشکده معماری و شهرسازی، دانشگاه هنر ایران، تهران

10.22059/jurbangeo.2025.382327.1988

چکیده

از میان انواع فضاهای شهری، فضاهای سبز شهری و پارک‌ها، به‌عنوان تنفس گاه‌های شهر، عرصه‌هایی سرسبز و آرامش‌بخش هستند و، به‌عنوان بستر فضایی پژوهش انتخاب‌شده‌اند. بنابراین این مقاله، با هدف تحلیل احساسات کاربران از پارک ملت تهران، در قالب پژوهشی تحلیلی و مبتنی بر روش کمی (رویکرد یادگیری ماشین نظارت‌شده و مبتنی بر لغت) است. داده‌ها پس از پیش‌پردازش و برچسب‌گذاری، با دو روش: مدل‌گرا و غیرمدل‌گرا، بررسی و تحلیل احساسات با زبان برنامه‌نویسی پایتون، انجام‌شده است. مقایسه این دو روش نشان داد که از میان الگوریتم‌های یادگیری ماشین، ایکس. جی.بوست با بیشترین دقت (87%)، کی-نزدیکترین همسایه و ماشین بردار پشتیبان با دقت کمتر، قابلیت پیش‌بینی احساسات در فضاهای سبز را دارند. روش لغوی (استفاده از فرهنگ لغت ویدر) در مقایسه با یادگیری ماشین، قابلیت پیش‌بینی کمتری دارد. در نهایت مدل یادگیری گروهی از نوع پشته‌سازی که برای بالا بردن دقت مدل استفاده‌شده که بر اساس نتایج ماتریس درهم‌آمیختگی (96%) قابلیت پیش‌بینی احساسات را دارد. بنابراین با بهره‌گیری از روش مبتنی بر داده‌های فضای مجازی، می‌توان، به پیش‌بینی احساسات کاربران سایر فضاهای سبز شهری با سرعت و دقت بالا در شهر تهران دست یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Users' Emotions analysis in urban parks based on data in virtual space; using Model-oriented and Non-model-oriented methods: the case study of Mellat park in Tehran

نویسندگان [English]

  • Maryam Mohammadi 1
  • Fatemeh Ghodousi 2
1 Department of Urban Design, Faculty of Architecture and Urban Planning, Iran University of Art, Tehran, Iran
2 Department of Urban Design, Faculty of Architecture and Urban Planning, Iran University of Art, Tehran, Iran
چکیده [English]

ABSTRACT
Among the types of urban spaces, urban green spaces and parks, as city breathing spaces, are lush and relaxing areas that have been selected as the case of this research paper. Therefore, this article aims to analyze the emotions of users of Mellat Park in Tehran in the form of analytical research based on a quantitative method (supervised machine learning approach and lexical-based. After preprocessing and labeling, the data were examined and analyzed using two methods, such as model-oriented and non-model-oriented. Emotions were also examined and analyzed using the Python programming language. The comparison of these two methods revealed that among the machine learning algorithms, XGBoost has the highest accuracy at 87%, while K-nearest neighbors and support vector machines have lower accuracy but are still capable of predicting emotions in green spaces. The lexical method (using the VADER dictionary) has a lower predictive ability compared to machine learning. Finally, the stacking ensemble learning model, which was used to increase the accuracy of the model, has the ability to predict emotions based on the results of the confusion matrix (96%). Therefore, using the method based on virtual space data, it is possible to predict the emotions of users of other urban green spaces with high speed and accuracy in Tehran.
Extended Abstract
Introduction
Increasing the quality of urban parks is effective in providing the psychological and emotional comfort of users. Sentiment analysis is an approach to measure the level of psychological comfort and emotional response of users to spaces.
 
Methodology
The research method in the case study is based on the quantitative method. The following presents the selected social virtual space, the time period of data extraction, and the methods used in both methods for data preparation and analysis. It was found that the Google Map social network is suitable for this study. After the pre-processing, in order to train and test the data, the data is divided into 80% training data and 20% testing data (for evaluating the models). Then, the data is labeled to train machine learning models using the points given by the users to the location. In order to select and allocate the appropriate model or algorithm, according to the subject under investigation and the need to classify emotions and achieve a predictive model, the models under the supervision of machine learning were used. The VADER method was used in the non-model method (classification of feelings by the dictionary method). At the same time, the Blending Ensemble model from the stacking family was also used in this research.
 
Results and discussion
According to the first method, among the implemented models, the XG Boost algorithm correctly recognized 87% of all messages and was the best algorithm. After that, the k nearest neighbor algorithm correctly recognized about 80% of all messages, support vector machine, 70%, and simple Bayes and linear discriminate analysis about 66% and 57% of all messages. Other models performed less than 50%, and the random forest model performed worse than all algorithms. The results of the second method showed that 22% of the data in the category of negative data were correctly identified, 33% of the neutral data were false, and 44% were identified as false positives. In the category of neutral data, 7% of false negative data, 20% of true neutral data, and 73% of false positive data have been detected. In positive data, 3% of false negative data, 15% of false neutral data, and 82% of positive data are correctly identified. As a result, in this method, the highest correct percentage associated with positive data is 82% correct detection. As a result, it had the best performance in detecting positive data, but it did not perform well in detecting negative and neutral data. In order to provide a predictive model with higher accuracy, the Blending Ensemble models and the stacking family, which is included in the Ensemble Learning model category, were used. The result of applying the proposed blending model to the test data in the confusion matrix shows that in the category of negative data, 80% of the data are correct, 10% of the data are neutral and false, and 10% have identified false positives from the data. In the category of neutral data, 0% of false negative data, 84% of true neutral data, and 16% of neutral data were detected as false positives. In the positive data section, 0% of false negative data, 3% of false neutral data, and 97% of true positive data have been identified. As a result, in general, in the proposed blending model, the best performance has been in positive data, which has been correctly recognized in 97%, and the most error in negative data has been in general with 20% false neutrals and false positives, which compared to other algorithms have a small percentage of errors and have performed well in all 3 categories of positive, neutral and negative. In relation to the evaluation criteria of this model, a percentage above 95% can be seen in all the evaluation criteria, which indicates the good performance of the model.
 
Conclusion
The results of the research showed that the model-oriented methods worked better than the word-based method, and the blending method was better than the machine learning algorithms. Therefore, the algorithm trained with the blending method has the ability to predict urban feelings in the park with a high probability. The chosen method has many applications in the field of urban planning and urban design because it provides the possibility of identifying citizens' feelings about the environment due to its low cost compared to field research and the speed of data analysis.
 
 
 
Funding
There is no funding support.
 
AuthorsContribution
Authors contributed equally to the conceptualization and writing of the article. All of the authors approved thecontent of the manuscript and agreed on all aspects of the work declaration of competing interest none.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Sentiment Analysis
  • Park
  • Social Network
  • Machine Learning
  • Lexical Method
  • Blending Learning
  1. پای‌کن، عصمت و پورجعفر، محمدرضا. (1398). بررسی اهمیت و حوزه‌های کاربرد لایه «احساسات شهری» در طراحی و برنامه‌ریزی شهری. معماری و شهرسازی ایران، 10(18)، 39-60. https://doi.org/10.30475/isau.2020.103676
  2. راپوپورت، ایماس. (1392). معنی محیط ساخته‌شده: رویکردی در ارتباط غیرکلامی. (ترجمه: فرح حبیب). تهران: شرکت پردازش و برنامه‌ریزی شهری
  3. ربانی خوراسگانی، علی و کیانپور، مسعود. (1388). جامعه‌شناسی احساسات. جامعه‌شناسی کاربردی،‌20(2)، 35-64. Dor:20.1001.1.20085745.1388.20.2.2.6
  4. سلطانی فر، محمد؛ بخشی، شیرزاد و فرامرزیانی، سعید. (1392). بررسی تأثیرات شبکه‌های اجتماعی فیس‌بوک و توئیتر بر گرایش اعضا به این شبکه‌ها. پژوهش‌های ارتباطی،20(76)،171-190. https://doi.org/10.22082/cr.2013.23569
  5. طاهرطلوع دل، محمدصادق؛ ضرغامی، اسماعیل؛ کمالی تبریزی، سینا و حیدری پور، امید. (1398). بررسی قابلیت ادراک محیط در سیستم واقعیت مجازی بر اساس مؤلفه‌های ادراک بصری. نشریه علمی اندیشه معماری، 3(5)، 106-124.‌ Doi:10.30479/at.2019.10665.1194
  6. محمدرضوی، سیدعلی؛ کیانپور، مسعود و آقابابایی، احسان. (1392). پدیدارشناسی احساسات کاربران در فضای مجازی (مطالعه موردی: جوانان شهر قم). پژوهش‌های ارتباطی، 24 (92)، 97-73. https://doi.org/10.22082/cr.2017.67715.1395
  7. طیرانی نجاران، نصیر و جلالی، مهراد (1397). ارائه رویکرد ترکیبی نوین جهت متن‌کاوی تحلیل احساسات در توئیتر با استفاده از درخت تصمیم. مدیریت مهندسی و رایانش نرم، 5(1)، 210-227.‌ Doi:10.22091/jemsc.2018.1272
  8. وب‌سایت سازمان بوستان‌ها و فضای سبز شهرداری تهران (1401). بازیابی شده در 14 تیر 1401، از https://parks.tehran.ir/
  9. یزدخواستی، بهجت؛ عدلی پور، صمد و کیخائی، الهام. (1392). حوزه عمومی و گفتگو در فضای مجازی شبکه‌های اجتماعی (بررسی تأثیر شبکه‌های اجتماعی مجازی بر گفتگوی میان فرهنگ‌ها). مطالعات فرهنگ- ارتباطات، (21)14، 81- 101. Dor:20.1001.1.20088760.1392.14.21.4.9
  10. Bergner, B. S., Zeile, P., Papastefanou, G., Rech, W., & Streich, B. (2011). Emotional Barrier-GIS – A new Approach to Integrate Barrier-Free Planning in Urban Planning Processes. (M. Schernk, V. Popovich& P. Zeile Eds.) Real Corp, changing for stability: Lifecycles of Cities and Regions, 247-257. https://api.semanticscholar.org/CorpusID:25935756
  11. Bhavitha, B. K., Rodrigues, A. P., & Chiplunkar, N. N. (2017). Comparative Study of Machine Learning Techniques in Sentimental Analysis. In 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT) (pp. 216-221). IEEE. doi: 10.1109/ICICCT.2017.7975191
  12. Carter, E., Adam, P., Tsakis, D., Shaw, S., Watson, R. & Ryan, P.   (2020). Enhancing Pedestrian Mobility in Smart Cities Using Big Data. Journal of Management Analytics, 7(2), 173-188. DOI: 10.1080/23270012.2020.1741039
  13. Davidson, R. J., & Begley, S. (2012). The Science of Emotion: Exploring the Basics of Emotional Psychology. Journal of Social and Clinical Psychology, 31(4), 394-402.
  14. De Oliveira, T. H. M., & Painho, M. (2015). Emotion & Stress Mapping: Assembling an Ambient Geographic Information-based Methodology in Order to Understand Smart Cities. In 2015 10th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1-4). IEEE. DOI: 10.1109/CISTI.2015.7170469
  15. Ekman, P., Sorenson, E. R., & Friesen, W. V. (1969). Pan-cultural Elements in Facial Displays of Emotion. Science, 164(3875), 86-88. https://doi.org/10.1126/science.164.3875.86
  16. Engelniederhammer, A., Papastefanou, G., & Xiang, L. (2019). Crowding density in urban environment and its effects on emotional responding of pedestrians: Using wearable device technology with sensors capturing proximity and psychophysiological emotion responses while walking in the street. Journal of Human Behavior in the Social Environment, 29(5), 630-646. https://doi.org/10.1080/10911359.2019.1579149
  17. Fathullah, A., & S. Willis, K. (2018). Engaging the Senses: The Potential of Emotional Data for Participation in Urban Planning. Urban Science, 2(98), 1-21. doi:10.3390/urbansci2040098
  18. Gao, H., & Liu, H. (2014). Data Analysis on Location-based Social Networks. Mobile Social Networking, 165-194.
  19. Ghahramani, M., Galle, N. J., Ratti, C., & Pilla, F. (2021). Tales of a City: Sentiment Analysis of Urban Green Space in Dublin. Cities, 119, 103395. https://doi.org/10.1016/j.cities.2021.103395
  20. Gu, S., Wang, F., Patel, N. P., Bourgeois, J. A., Huang, J. H. (2019). A Model for Basic Emotions Using Observations of Behavior in Drosophila. Frontiers in Psychology, 10(781). DOI:10.3389/fpsyg.2019.00781
  21. Gupta, B., Negi, M., Vishwakarma, K., Rawat, G., Badhani, P., & Tech, B. (2017). Study of Twitter Sentiment Analysis Using Machine Learning Algorithms on Python. International Journal of Computer Applications, 165(9), 29-34. Doi:10.5120/ijca2017914022
  22. Hao, J., & Dai, H. (2016). Social Media Content and Sentiment Analysis on Consumer Security Breaches. Journal of Financial Crime, 23(4), 855-869. Doi:10.1108/JFC-01-2016-0001
  23. Houtkamp, J. M. (2012). Affective appraisal of virtual environments. Unpublished PhD Thesis. Leiden University.
  24. Iaconesi, S., & Persico, O. (2013). An Emotional Compass Harvesting Geo-located Emotional States from User Generated Content on Social Networks and Using them to Create a Novel Experience of Cities. ESSEM Conference, Italy: Turin.
  25. Kovacs-Györi, A., Ristea, A., Kolcsar, R., Resch, B., Crivellari, A., & Blaschke, T. (2018). Beyond Spatial Proximity-Classifying Parks and their Visitors in London Based on Spatiotemporal and Sentiment Analysis of Twitter Data. ISPRS International Journal of Geo-Information, 7(9), 378. https://doi.org/10.3390/ijgi7090378
  26. Kumar, A., & Garg, G. (2020). Systematic Literature Review on Context-based Sentiment Analysis in Social Multimedia. Multimedia Tools and Applications, 79(21), 15349-15380. https://doi.org/10.1007/s11042-019-7346-5
  27. Kumar, D. P., Amgoth, T., & Annavarapu, C. S. R. (2019). Machine Learning Algorithms for Wireless Sensor Networks: A survey. Information Fusion, 49, 1-25. https://doi.org/10.1016/j.inffus.2018.09.013
  28. Lim, K. H., Lee, K. E., Kendal, D., Rashidi, L., Naghizade, E., Winter, S., & Vasardani, M. (2018). The Grass is Greener on the Other Side: Understanding the Effects of Green Spaces on Twitter User Sentiments. In Companion Proceedings of the The Web Conference 2018 (pp. 275-282). DOI:10.1145/3184558.3186337
  29. MacDonald, G. (2014). Bodies Moving and Being Moved: Mapping Affect in Christian Nold’s Bio Mapping. Somatechnics, 4(1), 108-132. doi: 10.3366/ soma.2014.0115
  30. Milne, D., & Watling, D. (2019). Big Data and Understanding Change in the Context of Planning Transport Systems. Journal of Transport Geography, 76, 235-244. https://jemsc.qom.ac.ir/article_1272.html?lang=en
  31. Mohamed, N., & Al-Jaroodi, J. (2014,). Real-time Big Data Analytics: Applications and Challenges. In 2014 International Conference on High Performance Computing & Simulation (HPCS) (pp. 305-310). IEEE. Doi:10.1109/HPCSim.2014.6903700
  32. Mohammad Razavi, S. A.,   Kianpour, M., & Aghababaei, E. (2018) . Phenomenology of Users' Emotions in Cyberspace (Case study: Youth of Qom). Communication Research, 24(92), 73-97. https://cr.iribresearch.ir/?_action=article&kw=105233&_kw=%D8%A7%D8%AD%D8%B3%D8%A7%D8%B3%D8%A7%D8%AA+%D9%85%D8%AC%D8%A7%D8%B2%DB%8C&lang=en [in Persian].
  33. O'Leary, D. E. (2013). Big Data, the ‘Internet of Things’and the ‘Internet of Signs. Intelligent Systems in Accounting, Finance and Management, 20(1), 53-65. https://doi.org/10.1002/isaf.1336
  34. Osborne, T. & Jones, P.I. (2017). Biosensing and geography: a mixed methods approach. Applied Geography, 87, 160-169. https://doi.org/10.1016/j.apgeog.2017.08.006
  35. Paikan, E., & Pourjafar, M.R. (2020). The Importance and Application of "Urban Emotions" in Urban Design and Planning. Journal of Iranian Architecture & Urbanism, 10(2), 39-60. https://www.isau.ir/article_103684.html?lang=en [in Persian].
  36. Pykett, J., Chrisinger, B. W., Kyriakou, K., Osborne,T., Resch, B., Stathi, A. & Whittaker, A. C. (2020). Urban Emotion Sensing Beyond ‘Affective Capture’: Advancing Critical Interdisciplinary Methods. International Journal of Environmental Research and Public Health, 17(23), 1-22. doi:10.3390/ijerph17239003
  37. Rabbani Khorasghani, A., & Kianpour, M. (2009).The Sociology of Emotions. Journal of Applied Sociology, 20 (2), 35-64. https://jas.ui.ac.ir/article_18178.html?lang=en [in Persian].
  38. Rahman, A., & Hossen, M. S. (2019). Sentiment Analysis on Movie Review Data Using Machine Learning Approach. 2019 International Conference on Bangla Speech and Language Processing (ICBSLP), Bangladesh: Sylhet. doi: 10.1109/ICBSLP47725.2019.201470.
  39. Rajeshwari, K., & ShanthiBala, P. (2018). Recognization of Sarcastic Emotions of Individuals on Social Network. International Journal of Pure and Applied Mathematics, 18(7), 253-259. http://www.ijpam.eu
  40. Rapaport, A. (1990). The Meaning of the Built Environment: A Nonverbal Communication Approach. (Translated by Farah Habib). US: University of Arizona Press. [in Persian].
  41. Resch, B., Sudmanns, M., Sagl, G., Summa, A., Zeile, P.,& Exner, J.-P. (2015). Crowdsourcing Physiological Conditions and Subjective Emotions by Coupling Technical and Human Mobile Sensors. Geographic Information Science, 1, 514-524. doi:10.1553/giscience2015s514
  42. Roberts, H., Sadler, J., & Chapman, L. (2018). The Value of Twitter Data for Determining the Emotional Responses of People to Urban Green Spaces. Urban Studies, 1-18. https://doi.org/10.1177/0042098017748544
  43. Sauter, D., Hogertz, C., Tight, M., Thomas, R., & Zaidel, D. (2010). Emotions of the urban pedestrian:sensory mapping. Pedestrians’ Quality Needs, Cheltenham:WALK21. 31-52.
  44. Schwartz, A. J., Dodds, P. S., O'Neil‐Dunne, J. P., Danforth, C. M., & Ricketts, T. H. (2019). Visitors to Urban Green Space Have Higher Sentiment and Lower Negativity on Twitter. People and Nature, 1(4), 476-485. DOI: 10.1002/pan3.100
  45. Soltanifar, M., Bakhshi, S., & Faramarziyani, S. (2013). Studying the Impacts of Facebook and Twitter on Members’ Propensity towards Such Networks. Communication Research, 20(76), 171-190. [in Persian].
  46. Taher Toloudel, M.S., Zarghami, E., Kamali Tabrizi, S., & Heydaripour, O. (2019). The Analysis on Potential of Environmental Perception in System of Virtual Reality Based on Elements of Visual Perception. Journal of Architectural Thought, 3(5), 106-124. [in Persian].
  47. Tayarani Najaran, N., & Jalali, M. (2019). Presenting a Novel Hybrid Approach of Text Mining Sentiment Analysis in Twitter Using CART Decision Tree. Engineering Management & Soft Computing, 5(1), 210-227. https://doi.org 10.22091/jemsc.2018.1272 [in Persian].
  48. Tehran Municipality Parks and Green Space Organization website (2022). Retrieved on 14 July 2022, https://parks.tehran.ir [in Persian].
  49. Tyagi, P., Chakraborty, S., Tripathi, R. C., & Choudhury, T. (2019). Literature Review of Sentiment Analysis Techniques for Micro blogging Site. In International Conference on Advances in Engineering Science Management & Technology (ICAESMT)-2019, Uttaranchal University, India: Dehradun.http://dx.doi.org/10.2139/ssrn.3403968
  50. Valtchanov, D., & Ellard, C. (2010). Physiological and affective responses To immersion in Virtual reality: effects of nature and urban settings. Journal of Cyber Therapy & Rehabilitation, 3(4), 359-373.
  51. Wang, Z., Zhu, Z., Xu, M., & Qureshi, S. (2021). Fine-grained Assessment of Green Space Satisfaction at Regional Scale Using Content Analysis of Social Media and Machine Learning. Science of the Total Environment, 776, 145908
  52. YazdKhasti, B., Adlipour, S., & Keikhaei, E. (2013). Public Sphere and Dialogue in Social Networks (The Study of the Effect of Virtual Social Networks on Cross-cultural Dialogues). Journal of Culture-Communication Studies, 14(21), 81-101. [in Persian].
  53.  Zhu, Y. (2020). The prediction Model of Personality in Social Networks by Using Data Mining Deep Learning Algorithm and Random Walk Model. The International Journal of Electrical Engineering & Education, 0020720920936839. https://doi.org/10.1177/0020720920936839