اثر ساختار و عملکرد فضاهای شهری در زون‌بندی نوین اقلیمی مطالعه موردی: منطقه شهری اردبیل

نوع مقاله : پژوهشی - کاربردی

نویسندگان

گروه جغرافیای طبیعی، دانشکده جغرافیا، دانشگاه تهران، تهران، ایران

10.22059/jurbangeo.2025.382658.1990

چکیده

شهرها فضاهایی با غلبه مناظر ساختمانی با ویژگی‌های هندسی، پوششی و جریان‌های آیرودینامیکی مشخص هستند که شرایط اقلیمی متنوعی را به نمایش می‌گذارند. تنوع بالای پوشش‌های سطحی، موزاییکی از اقلیم‌ها را در مقیاس‌های محلی و خرد ارائه می‌دهد. برای شناسایی و طبقه‌بندی این اقلیم‌ها، ابزارها و روش‌های مدرن موردنیاز است. نقشه زون اقلیم محلی یک روش نوین برای طبقه‌بندی مناطق اقلیم شهری است که به شناسایی جزایر گرمای شهری تأکید دارد. در این مطالعه از تصاویر ماهواره لندست 8 سال 2023 و ماه‌های می، ژوئن، آگوست و نوامبر برای طبقه‌بندی زون‌های اقلیم محلی شهر اردبیل استفاده شد. در فرایند پردازش و تولید نتایج، برنامه‌ها و ابزارهای متنوعی برای پیش‌پردازش و پردازش تصاویر، نمونه‌گیری زون‌های اقلیمی و طبقه‌بندی و تحلیل‌های عددی استفاده گردید. پس از انجام پردازش‌های لازم، نقشه اقلیم محلی شهر اردبیل با 14 طبقه اقلیمی استخراج شد. نتایج این تحقیق نشان داد که بیشترین طبقه اقلیم محلی شهر اردبیل مربوط به طبقات LCZ2 و LCZ3 است که شامل محلاتی با بافت ساختمانی متراکم و ارتفاع متوسط و کوتاه می‌باشد. وجود دریاچه شورابیل و فضاهای سبز پیرامون آن در محدوده شهر با محیط هفت کیلومتری، اضافه بر نقش تفرجی، ظرفیت بالایی در خنک‌کنندگی فضای شهری اردبیل دارد. تراکم ساختمانی و سازه‌های انسانی با رویه‌های بتونی و آسفالتی نفوذناپذیر باعث کاهش پوشش گیاهی و پتانسیل جابجایی و تهویه طبیعی هوا شده که همراه با افزایش انتشار گرمای ناشی از فعالیت انسانی، منجر به تشدید ظرفیت شکل‌گیری جزیره گرمای شهری در مناطق مرکزی شهر می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

The influence of the structure and function of urban areas in the modern climatic zoning: A case study of Ardabil urban area

نویسندگان [English]

  • Aliakbar Shamsipour
  • Ali Azimi
  • Roghayeh Ansari Golenji
Department of Physical Geography, Faculty of Geography, University of Tehran, Tehran, Iran
چکیده [English]

ABSTRACT
Cities are spaces dominated by built environments characterized by specific geometric, surface, and aerodynamic features, creating diverse climatic conditions. The high variability of surface covers presents a mosaic of climates at local and micro scales. Modern tools and methods are required to identify and classify these climates. The Local Climate Zone (LCZ) map is an innovative method for classifying urban climate areas, with a particular focus on identifying urban heat islands. In this study, Landsat 8 satellite images from 2023, covering the months of May, June, August, and November, were used to classify the local climate zones of Ardabil city. A variety of programs and tools were employed during the processing stages for image pre-processing, sampling of climate zones, classification, and numerical analysis. After completing the necessary processes, the local climate map of Ardabil was generated, identifying 14 climate classes. The results revealed that the most common local climate zones in Ardabil were LCZ2 and LCZ3, which include neighborhoods with dense building structures of medium and low heights. Lake Shorabil and the surrounding green spaces within a 7-kilometer radius, in addition to their recreational value, have a significant cooling effect on Ardabil's urban environment. The density of buildings and impervious surfaces like concrete and asphalt have reduced vegetation cover and the potential for natural air circulation and ventilation. This, combined with the increased heat emissions from human activities, has intensified the capacity for urban heat island formation in the city's central areas
Extended Abstract
Introduction
Cities are defined by their unique architectural landscapes, which showcase distinct geometric forms, coverings, and aerodynamic patterns contributing to a diverse climate. The physical characteristics, geometric configurations, and land use/cover of urban spaces fundamentally alter drainage patterns, surface hydrological networks, and groundwater aquifers. These changes also disrupt the balance of energy exchange between the surface and the atmosphere, resulting in a mosaic of climates and temperatures within urban environments. Additionally, cities significantly influence airflow patterns and natural ventilation in neighborhoods, thanks to their three-dimensional layouts. The variety of land cover processes creates a mosaic of climates on local and micro scales, necessitating modern tools and methodologies for classification. One such tool is the local climate zone map, which effectively categorizes urban climate zones and focuses on identifying urban heat islands. A study of numerous articles shows that the preparation of maps of local climate zones is superior to other methods of classification and preparation of urban climate maps due to the attention paid to the human and natural structure of the city about climatic factors and its separation into 17 classes. Ardabil has a dense and compact urban texture consisting of medium-rise and low-rise buildings and narrow alleys that play a minor role in air conditioning.
 
Methodology
This research is applied in nature and employs spatial statistics for analysis. A quantitative approach was utilized, incorporating numerical and documentary data through two primary methods as a literature review and acquiring satellite images and official records for meteorological data and urban information layers pertaining to Ardabil. Landsat 8 satellite images captured in May, June, August, and November of 2023 were utilized to classify local climate zones in Ardabil. Nestled in the northern part of the Ardabil Plain and along the Baliglu Chay River, Ardabil lies in northwestern Iran, close to the border with Azerbaijan, and is separated from the Caspian Sea and Gilan Province by the Tarom Mountains and Heyran Strait. The city features a dense and compact urban fabric composed of medium- to low-rise buildings interspersed with narrow alleys that limit airflow. For the processing and analysis of results, SAGA-GIS software was used for image preprocessing, Google Earth assisted in climatic zone sampling, and ArcGIS was employed for numerical classification and analysis.
 
Results and discussion
After processing the data, we created a local map for Ardabil City, identifying 14 distinct climate classes. Most areas of Ardabil are characterized by dense buildings, particularly in the central and northern halves, which correspond to local climate classes LCZ 2 and LCZ 3. In contrast, the southern half of the city features dense buildings with more open layouts and medium heights. The climate classes characterized by dense, open textures and low to medium heights cover approximately 2,309.79 square kilometers, making up about 18.86% of the study area. Natural covers, including scattered trees, parks, green spaces, and shrubs, classified under local climate classes LCZ A and LCZ B, encompass roughly 139 square kilometers, or 0.7% of the study area. This greenery is distributed throughout the city but is particularly concentrated along the Baliglu River, Tulip Park, Giral Garden, and inner-city pear orchards. These local climate zones play a significant role in moderating the urban climate. In Ardabil, the sky visibility index is relatively low due to the medium and low building density (primarily low-rise structures). However, the sky visibility index is higher in the peripheral areas of the city, thanks to the presence of open spaces, grassy lands, and agricultural zones on the outskirts. Overall, Ardabil enjoys good sky visibility. The local climate map reveals that the aspect ratios in the city's central areas are higher, while peripheral regions and areas outside the city show lower aspect ratios. The percentage of permeable surfaces is notably high in urban areas with tree cover and short grass, whereas impermeable surfaces characterize areas with dense urban development and rocky outcrops.
 
 
Conclusion,
Ardabil is a largely homogeneous city in terms of its texture and function, with most areas classified as LCZ 2, 3, and 8. These classes consist of dense, low-rise buildings as well as large, low-rise structures. The prevalence of buildings and hard surfaces made of concrete and asphalt has significantly reduced vegetation, diminishing natural air movement and ventilation. This, combined with increased heat emissions from human activities, has intensified the urban heat island effect, particularly in the city's central areas. As Ardabil expands southward and construction activity in these regions increases, the need for more green spaces, reduced building density, and improved ventilation through open areas becomes increasingly apparent. Addressing these issues is crucial for alleviating pressure on groundwater resources and enhancing the urban environment.
 
Funding
There is no funding support.
 
Authors’ Contribution
Authors contributed equally to the conceptualization and writing of the article. All of the authors approved thecontent of the manuscript and agreed on all aspects of the work declaration of competing interest none.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Climatic Classes
  • Urban Climate
  • Construction Levels
  • Land Cover
  • LCZ
  • Iran
  1. باقری، بهنام و کنعان‌پور، عبدالله. (1402). ارزیابی و تحلیل کیفی کاربری اراضی شهری از منظر عدالت فضایی با استفاده از مدل RN و تکنیک‌های آماره فضایی (مطالعه موردی: شهر اردبیل). فصلنامه جغرافیا، 21(78): 75-92. https://doi.org/10.5194/gmd-17-2077-2024.
  2. سپاسی زنگی‌آبادی، سعید؛ شمسی‌پور، علی‌اکبر و حسینی، علی. (1401). پهنه‌بندی آب‌وهوای محلی کلان‌شهر تهران بر پایه ساختار فیزیکی. نشریه علمی مطالعات شهری، 12(48): 54-43. https://doi:10.34785/J011.2022.019
  3. شماعی، علی؛ کمانرودی، موسی و خلیلی اوماسلان سفلی، سید علی. (1397). تحلیل اثر ارتقاء جایگاه سیاسی شهر اردبیل بر توسعه فضایی شهر. مجله پژوهش‌های جغرافیای سیاسی، 3 (12)، 63-92. https://doi:10.22067/pg.v3i4.8158.
  4. شمسی‌پور، علی‌اکبر. (1403). مدل‌سازی اقلیمی. نظریه و روش، ویراست دوم، تهران: انتشارات دانشگاه تهران.
  5. شمسی‌پور، علی‌اکبر. (1402). نگاشت اقلیم شهر و توصیههای برنامهریزی؛ مروری بر تجارب جهانی. چاپ دوم، تهران: انتشارات دانشگاه تهران.
  6. صفائی‌پور، مسعود؛ گودرزی، مجید و پژواک، فضل‌الله. (1403). تحلیل جغرافیایی شاخص‌های عینی و ذهنی توسعه فضای سبز شهری دزفول با رویکرد زیست‌پذیری. پژوهش‌های جغرافیای برنامه‌ریزی شهری، 12(4)، 1-18. https://doi:10.22059/jurbangeo.2024.380545.1975
  7. کورکی‌نژاد، محمدحسن؛ شمسی‌پور، علی‌اکبر و حبیبی، کیومرث. (1402). دستورالعمل برنامه‌ریزی با نقشه‌های اقلیم شهری مطالعه موردی: شهر تهران. فصلنامه پژوهش‌های جغرافیای برنامه‌ریزی شهری، 11(3)، 20-1.
  8. https://doi:10.22059/jurbangeo.2023.351363.1759
  9. مدنی‌پور، علی. (1387). طراحی فضای شهری: نگرشی بر فرایندی اجتماعی - مکانی. ترجمه فرهاد مرتضایی، چاپ سوم، تهران: تهران: انتشارات پردازش و برنامه‌ریزی شهری.
  10. ورامش، سعید؛ محترم عنبران، سهراب و روح نواز، زهرا. (1401). ارزیابی و پایش روند گسترش فیزیکی سی‌ساله شهر اردبیل با استفاده از تصاویر ماهواره‌ای. فصلنامه اطلاعات جغرافیایی، 31(123)، 139-153. http://doi:10.22131/sepehr.2022.699919.
  11. یزدانی، محمدحسین و فیروزی مجنده، ابراهیم. (1394). بررسی توزیع فضایی کاربری‌های عمومی از منظر عدالت فضایی مطالعه موردی، شهر اردبیل. نشریه جغرافیا و برنامه‌ریزی، 21(61)، 383-263.
  1. Bagheri, B., & Kananpour, A. (2023). Evaluation and quantitative analysis of urban land use from the prospective of spatial justice using RN model and spatial statistics techniques (Case study: Ardebil city). Geography, 21(78), 75-92. 3 http://dor.net/dor/20.1001.1.27833739. [In Persian].
  2. Benjamin, K., Luo, Z., & Wang, X. (2021). Crowdsourcing Urban Air Temperature Data for Estimating Urban Heat Island and Building Heating/Cooling Load in London. Energies, 14, 5208. https://doi.org/10.3390/en14165208.
  3. Bernard, J., Bocher, E., Gousseff, M., Leconte, F., & Saux-Wiederhold, E.L. (2024). A generic algorithm to automatically classify urban fabric according to the local climate zone system: implementation in GeoClimate 0.0.1 and application to French cities. Geosci. Model Dev, 17, 2077–2116. https://doi.org/10.5194/gmd-17-2077-2024.
  4.  Chao, R., Edward, N.G., yunga,Y., & Lutz, K. (2010). Urban climatic map studies: a review. International Journal Climatology. https://doi.10.1002/joc.2237.
  5.  Demuzere, M., Kittner, J., & Bechtel, B. (2021). LCZ Generator: A Web Application to Create Local Climate Zone Maps. Frontiers in Environmental Science, https://doi.org/10.3389/fenvs.2021.637455.
  6. Evans, J.M. & de Schiller, S. (1996). Application of microclimate studies in town planning: A new capital city, an existing urban district & urban river front development. Atmospheric Environment, 30(3), 361–364. https://doi.org/10.1016/1352-2310(94)00138-3.
  7.  Johnson, B.A. & Jozdani, S.E. (2019). Local Climate Zone (LCZ) Map Accuracy Assessments Should Account for Land Cover Physical Characteristics that A ect the Local Thermal Environment. Remot sens, 11. https://doi:10.3390/rs11202420.
  8. Kaloustiana, N. & Bechtel, B. (2016). Local Climatic Zoning and Urban Heat Island in Beirut. Procedia Engineering, 169, 216-223. https://doi.org/10.1016/j.proeng.2016.10.026.
  9.  Katzschner, L. & Campe, S. (2015). Urban climatic map studies in Germany: Frankfurt, Chapter book 18. Roudledge, 247-251. https://doi.org/10.4324/9781315717616.
  10. Katzschner, L. & Horn, K. (2005). Klimabewertungskarte Hessen. Wiesbanden: Hessisches Minsiterium für Wirtschaft und Landesentwicklung.
  11. Kopp, J., Frajer, J., Novotná, M., Preis, J. & Dolejš, M. (2021). Comparison of Ecohydrological and Climatological Zoning of the Cities: Case Study of the City of Pilsen. https://doi.org/10.3390/ijgi10050350.
  12. KorkiNezhad, M., Shamsipour, A. & Habibi, K. (2023). lanning recommendations with urban climate maps The Case study of Tehran city. Geographical Urban Planning Research (GUPR)11(3), 1-20. https://doi:10.22059/jurbangeo.2023.351363.1759. [In Persian].
  13. Lau, K., Chung, S.C. & Ren, C. (2019). Outdoor thermal comfort in different urban settings of sub-tropical high-density cities: An approach of adopting local climate zone (LCZ) classification. Build Environ, 227–238. https://doi.org/10.1016/j.buildenv.2019.03.005.
  14. Lauwaet, D., Berckmans, J., Hooyberghs, H., Wouters, H., Driesen, G., Lefebre, F. & Ridder, K. (2024). High resolution modelling of the urban heat island of 100 European cities. journal Urban Climate. https://doi.org/10.1016/j.uclim.2024.101850.
  15.  Lee, D., Kyushik Oh, & Seunghyun Jung. (2019). Classifying Urban Climate Zones (UCZs) Based on Spatial Statistical Analyses. Sustainability, 11, 1915, doi:10.3390/su11071915.
  16.  Lehnert,M., Savic,S., Miloševic,D., Dunjic J., & Geletic,J. (2021). Mapping Local climate Zones and Their Applications in European Urban Environments: A Systematic Literature Review and Future Development Trends. International Journal of Geo-Information, 10, 260. https://doi.org/10.3390/ijgi10040260.
  17. Madanipour, A. (2008). Urban Space Design: A Perspective on a Social-Spatial Process. 3rd Edition. Tehran: Translated by Farhad Mortezaei. Tehran: Pardazah and Urban Planning Publications. [In Persian].
  18. Picone, N., & Campo, María, A. (2015). Preparing Urban climate maps using the LCZ methodology improving communication with urban planners: the case of Tandil city, Argentina. Conference Paper, https://www.researchgate.net/publication/280446545.
  19.  Ping, Yu., Fan, A., Qing, He b., Yi Zhou, T. (2023). Identifying research progress, focuses, and prospects of local climate zone (LCZ) using bibliometrics and critical reviews. Heliyon, doi.org/10.1016/j.heliyon.2023.e14067.
  20. Pradhesta, YF., Nurjani, E., & Arijuddin, BI. (2019). Local Climate Zone classification for climate-based urban lanning using Landsat 8 Imagery (A case study in Yogyakarta Urban Area. https://doi.org/10.1088/1755-1315/303/1/012022.
  21. Qi, M., Xu, C., Zhang, W., Demuzere, M., Hystad, P., Tianjun Lu, T., Peter J, B., Bechtel, B., & Hankey, S. (2024). Mapping urban form into local climate zones for the continental US from 1986–2020. nature scientificdata. https://doi.org/10.1038/s41597-024-03042-4.
  22. Ren, C., Cai, M., Li, X., Zhang1, L., Wang, R., Xu,Y., & Edward Ng. (2019). Assessment of Local Climate Zone Classification Maps of Cities in China and Feasible Refinements. nature scientific reports, 9, https://doi.org/10.1038/s41598-019-55444-9.
  23. Rena, R., Spitb, T., Lenzholzerc, S., Lam, H., & Yimd, S., Heusinkvelde, B., Hovee, B.V., Chena, L., Kupskif, S., Burghardtf, R. and Katzschnerf, L. (2012). Urban Climate Map System for Dutch spatial planning. International Journal of Applied Earth Observation and Geoinformation, 18, 207–221. https://doi.org/10.1016/j.jag.2012.01.026.
  24. Safaeepour, M., Goodarzi, M., & Pajhwokc, F. (2024). Geographical analysis of objective and subjective indicators of Dezful urban green space development with livability approach. Geographical Urban Planning Research (GUPR)12(4), 1-18. https://doi:10.22059/jurbangeo.2024.380545.1975. [In Persian].
  25. Sepasi-Zangiabadi, S., Shamsipour, A.A. & Hosseini, A. (2023). Local Climate Zoning of Tehran metropolitan base on physical structure. Motaleate Shahri12(48), 43-54. https://doi:10.34785/J011.2022.019. [In Persian].
  26. Shamaei, A., kamanroodi kajverdi, M. & khalili-omaslan sofla, S.A.K. (2018). Analysis of Impacts of Promoting the Political Position of Ardabil on the spatial development of the city. Research Political Geography Quarterly3(2), 63-92. https://doi:10.22067/pg.v3i4.8158. [In Persian].
  27. Shamsipour, A. (2023). Urban Climate Mapping and Planning Recommendations; A Review of Global Experiences. 2nd Edition. Tehran: University of Tehran Press. [In Persian].
  28. Shamsipour, A. (2024). Climate Modeling, Theory and Method. 2nd Edition, University of Tehran Press, Tehran. [In Persian].
  29. Varamesh, S., Mohtaram-Anbaran, S., & Rouhnavaz, Z. (2022). Evaluation and monitoring of the thirty-year physical expansion process of Ardabil city using satellite images Quarterly of Geographical Data (SEPEHR)31(123), 139-153. http://doi:10.22131/sepehr.2022.699919. [In Persian].
  30. Yang, G., Fu, Y., Yan, M., & Zhang, J. (2020). Exploring the distribution of energy consumption in a northeast Chinese city based on local climate zone scheme:Shenyang city as a case study. Energy Explor Exploit, 38,2079–2094. https://doi.org/10.1177/014459872095046.
  31. Yazdani, M.H. & Firoozei-Majande, E. (2017). The Analysis of Public Land Distribution in Order to Measure the Space Justice in the Enjoyment of Urban Areas from Public Facilities (Case Study: Ardabil City). Journal of Geography and Planning21(61), 263-283. [In Persian].
  32. Zwolska, A., Półrolniczak, M., and Kolendowicz, L. (2024). Urban growth’s implications on land surface temperature in a medium‑sized European city based on LCZ classification. Scientific Reports. https://doi.org/10.1038/s41598-024-58501-0