تحلیل فضایی–زمانی رخداد زمین‌لرزه با استفاده از آماره‌های فضایی در سامانه اطلاعات جغرافیایی GIS، مطالعه موردی: منطقه شمال غرب ایران

نوع مقاله : پژوهشی - کاربردی

نویسندگان

گروه جغرافیا و برنامه‌ریزی شهری، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران

10.22059/jurbangeo.2025.393830.2058

چکیده

تحلیل فضایی-زمانی زمین‌لرزه‌ها نقش مهمی در شناسایی نواحی پرخطر، اولویت‌بندی مداخلات و کاهش آسیب‌پذیری لرزه‌ای ایفا می‌کند. پژوهش حاضر با هدف تحلیل خوشه‌های لرزه‌ای در منطقه شمال غرب ایران، از داده‌های بیش از ۳۵۰۰ رخداد زمین‌لرزه با بزرگای ۴ و بیشتر، در بازه زمانی ۱۳۷۵ تا ۱۴۰۳ بهره گرفته است. این داده‌ها از مرکز لرزه‌نگاری مؤسسه ژئوفیزیک دانشگاه تهران استخراج و با استفاده از سامانه اطلاعات جغرافیایی (GIS) و تکنیک‌هایی مانند چگالی کرنل (KDE)، شاخص خوشه‌ای Getis-Ord Gi و خودهمبستگی مکانی موران بررسی شدند. یافته‌ها نشان داد که بیشترین تراکم زمین‌لرزه‌ها در مجاورت گسل‌های فعالی چون تبریز، خوی، سلماس و مکران رخ‌داده و حدود ۶۲٪ شهرهای منطقه در شعاع کمتر از ۱۴ کیلومتر از این رخدادها قرار دارند. همچنین، ۷۵٪ زمین‌لرزه‌ها دارای عمق کمتر از ۱۵ کیلومتر بوده‌اند که خطر تخریب شدید در بافت‌های متراکم شهری را افزایش می‌دهد. در این میان، خوشه‌های داغ در نواحی شهری پرتراکم شناسایی‌شده که با پهنه‌های با آسیب‌پذیری بالا انطباق دارند. نوآوری پژوهش در تلفیق تحلیل‌های فضا–زمانی، شاخص‌های آسیب‌پذیری چندبعدی، و مدل‌سازی منطقه‌ای با ابزارهای پیشرفته GIS است که الگویی بومی‌شده برای ارزیابی لرزه‌ای در مقیاس فراشهری ارائه می‌دهد. یافته‌ها بر لزوم اجرای استانداردهای سخت‌گیرانه ساخت‌وساز، توسعه سامانه‌های هشدار سریع، پایش مداوم گسل‌ها و طراحی پایگاه‌های داده مکانی به‌روز تأکید دارد. همچنین استفاده از مدل‌های تصمیم‌گیری چندمعیاره، Random Forest و ANN در برنامه‌ریزی مدیریت بحران توصیه می‌شود. از جمله محدودیت‌ها، فقدان داده‌های دقیق ژئوتکنیکی در مقیاس منطقه‌ای است که در پژوهش‌های آتی قابل جبران خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Spatio-temporal analysis of earthquake occurrences using spatial statistics in a Geographic Information System (GIS) environment: A case study of Northwestern region of Iran

نویسندگان [English]

  • Roya Moghabeli,
  • Masoumeh Raji Khah
  • Alireza Mohammadi
Department of Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

ABSTRACT
Spatiotemporal analysis of earthquakes plays a critical role in identifying high-risk areas, prioritizing interventions, and reducing seismic vulnerability. This study aimed to analyze seismic clusters across the northwest region of Iran using data from over 3,500 earthquake events with magnitudes of 4.0 and above, recorded between 1996 and 2024. The data were obtained from the Seismological Center of the Institute of Geophysics, University of Tehran, and analyzed using Geographic Information Systems (GIS) techniques such as Kernel Density Estimation (KDE), Getis-Ord Gi* hot spot analysis, and Moran’s I spatial autocorrelation. Results showed that the highest concentration of earthquakes occurred near major fault lines such as Tabriz, Khoy, Salmas, and Makran, with around 62% of urban settlements located within a 14-kilometer radius of these epicenters. Additionally, 75% of recorded events had focal depths below 15 kilometers, increasing the potential for severe damage in densely built urban areas. Hot spot clusters were also identified in heavily populated cities, aligning with zones of high vulnerability. The study’s novelty lies in integrating advanced spatiotemporal analytics, multidimensional vulnerability indices, and regional-scale modeling using GIS tools to develop a localized framework for seismic risk assessment. Findings highlight the need for strict construction standards, early warning systems, continuous fault monitoring, and up-to-date spatial databases. The application of multi-criteria decision-making (MCDM), Random Forest algorithms, and Artificial Neural Networks (ANN) in disaster planning is also recommended. One limitation is the lack of detailed geotechnical data at the regional scale, which future research can address.
Extended Abstract
Introduction
Earthquake vulnerability in seismically active regions such as northwestern Iran presents a persistent and multifaceted challenge for urban planning and disaster risk management. The region’s complex tectonic structure, high density of active fault systems—including the Tabriz, Salmas, and Maku faults—and rapid urbanization processes make it one of the most hazard-prone areas in the country. Despite a long history of destructive earthquakes, comprehensive spatial assessments of seismic vulnerability at the regional scale remain scarce. Most prior studies have focused on individual cities or applied single-method analyses, limiting the ability to identify macro-scale spatial patterns and formulate coordinated resilience strategies. Addressing this gap, the present study applies a spatiotemporal approach using advanced geospatial technologies to assess seismic exposure, identify high-risk urban centers, and develop a regionally adapted vulnerability model. The study is theoretically grounded in the integration of physical, environmental, and socio-economic indicators of vulnerability, and contributes to the development of spatial decision-support tools for earthquake risk reduction in Iran and similar seismic zones.
 
Methodology
This research adopts a descriptive-analytical methodology based on advanced spatial analysis techniques within a Geographic Information System (GIS) framework. The dataset includes more than 3,500 recorded earthquakes of magnitude 4.0 and above during the period 1996–2024, extracted from the Seismological Center of the Institute of Geophysics, University of Tehran. Earthquake records were geocoded and analyzed using several complementary methods. First, Kernel Density Estimation (KDE) was used to visualize the spatial intensity of seismic events and identify seismic hotspots. Second, spatial clustering analysis using the Local Moran’s I index revealed the degree of spatial autocorrelation and highlighted statistically significant clusters. Third, Getis-Ord Gi* hot spot analysis was applied to pinpoint zones with elevated seismic activity and identify cities situated within them. Buffer analysis determined the proximity of urban settlements to earthquake epicenters and was used to generate proximity-based vulnerability zones. Urban boundary data, population density, and infrastructure layers were overlaid with seismic data to assess spatial vulnerability at the city level. The resulting maps were synthesized to produce a final vulnerability model, facilitating prioritization and crisis planning.
 
Results and discussion
The KDE analysis demonstrated strong spatial clustering of earthquakes along primary fault zones, particularly in northwestern areas near Tabriz, Urmia, Khoy, and Maku. These regions exhibited the highest seismic density throughout the 28-year study period. Hot spot analysis using the Gi* index confirmed that cities like Tabriz, Urmia, and Salmas fall within statistically significant high-risk clusters. Local Moran’s I values indicated non-random distribution of seismic events, highlighting spatial dependence in fault-related earthquake occurrence. Buffer analysis revealed that approximately 62% of the 40 regional cities are located within 14 kilometers of the nearest earthquake epicenter, and thus face substantial seismic exposure. Furthermore, 75% of recorded earthquakes had focal depths less than 15 km, increasing the potential for severe surface-level damage in densely populated urban areas. Risk prioritization analysis identified Tabriz, Urmia, Maragheh, and Sarab as the most vulnerable cities, due to their proximity to fault lines, high population densities, and weak infrastructure resilience.
In comparing these findings with prior research in cities such as Tehran (Afsari et al., 2023), Sanandaj (Yariyan et al., 2020), and Istanbul (Alemdar, 2025), the current study introduces a unique contribution by combining KDE, Gi*, and Local Moran’s I in a multi-method framework. This integration enables a richer understanding of regional-scale patterns of vulnerability. Unlike single-city studies or those based solely on AHP or MCDM methods, the present research offers a holistic, geospatially-driven model that is more scalable and adaptable to large-scale disaster planning. The limitations of the study include the exclusion of earthquakes under magnitude 4.0 and the lack of detailed geotechnical and construction quality data, which should be addressed in future research. Nevertheless, the analysis sets a solid empirical foundation for further expansion.
 
Conclusion
This study conducted a spatiotemporal analysis of earthquake vulnerability in northwestern Iran using advanced GIS-based techniques and seismic data from 1996 to 2024. The results revealed significant seismic clustering near major fault zones, particularly around the Tabriz, Salmas, Khoy, and Makran faults. Kernel Density Estimation (KDE) identified areas with high seismic intensity, while Getis-Ord Gi* hotspot analysis and Moran’s I confirmed strong spatial clustering of events near fault lines and urban centers. Buffer and polygon-based risk assessments showed that approximately 62% of urban areas lie within 14 kilometers of high-magnitude earthquake epicenters. Additionally, more than 75% of recorded earthquakes occurred at depths less than 15 kilometers, increasing potential damage risks in densely populated cities such as Tabriz, Urmia, Sarab, and Maragheh. These findings highlight the urgent need for data-driven mitigation strategies in this seismically active region.
The study underscores the importance of applying multi-criteria decision-making (MCDM) models in GIS environments to prioritize at-risk zones and inform emergency planning. The results also support the use of predictive models such as Random Forest, ANN, and PROMETHEE-VIKOR, especially in data-scarce contexts. Building urban-scale spatial databases from multi-source inputs, as demonstrated in recent European studies, can further support the development of early warning and rapid response systems. Given the population exposure, structural vulnerability, and planning challenges in several cities, implementing stricter seismic codes, monitoring active faults, and improving public education are essential. Future research should integrate geotechnical data, run earthquake scenario simulations, and explore AI-based forecasting models to improve accuracy and usability. This study offers a regionally tailored yet adaptable framework for assessing seismic vulnerability and guiding urban resilience strategies.
 
Funding
There is no funding support.
 
Authors’ Contribution
Authors contributed equally to the conceptualization and writing of the article. All of the authors approved thecontent of the manuscript and agreed on all aspects of the work declaration of competing interest none.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Urban Vulnerability
  • Spatio-Temporal Analysis
  • Earthquake
  • Geographic Information System (GIS)
  • Northwestern Iran
  1. پورمحمدی، محمدرضا؛ یوسفی شهیر، هانیه و حسین‌زاده دلیر، کریم. (1397). ارزیابی تاب‌آوری کاربری‌های حیاتی کلان‌شهر تبریز در برابر مخاطره طبیعی زلزله. پژوهش‌های جغرافیای برنامه‌ریزی شهری، 6 (1)، 55-74. https://doi.org/10.22059/jurbangeo.2018.247162.826
  2. کریمی قطب‌آبادی، فضل اله و زنگی‌آبادی، علی. (1402). تدوین سناریوهای ارتقاء تاب‌آوری سکونتگاه‌های شهری جدید در برابر خطر زلزله مطالعه موردی: منطقه شهری اصفهان بزرگ. پژوهش‌های جغرافیای برنامه‌ریزی شهری، 11(2)، 175-193. https://doi.org/10.22059/jurbangeo.2023.348871.1735
  3. مرکز ملی آمار ایران (1400). https://amar.thmporg.ir
  4. مشکینی، ابوالفضل و علیپور، سمیه. (1403). تحلیل تاب‌آوری اجتماعی مسکن محلات شهری در برابر زلزله مطالعه موردی: محلات منطقه ۱۵ شهر تهران. پژوهش‌های جغرافیای برنامه‌ریزی شهری، 12(3)، 1-22. http://doi.org/10.22059/jurbangeo.2024.378878.1963
  5. مهرپویان، مجتبی؛ جامی، محسن؛ خطیب، محمدمهدی؛ سرحدی، نازنین. (1395). گسلش فعال در طول گسل تبریز (شمال غرب ایران). نشریه جغرافیا و آمایش شهری منطقه‌ای، 6 (19)، 201-216.
  6. Afsari, R., Nadizadeh Shorabeh, S., Bakhshi Lomer, A. R., Homaee, M., & Arsanjani, J. J. (2023). Using Artificial Neural Networks to Assess Earthquake Vulnerability in Urban Blocks of Tehran. Remote Sensing15(5), 1248. https://doi.org/10.3390/rs15051248
  7. Alemdar, K. D. (2025). Seismic risk assessment of transportation networks for the impending Istanbul earthquake with GIS-based MCDM approach. Natural Hazards121(9), 10085-10123. https://doi.org/10.1007/s11069-025-07199-y
  8. Alizadeh, M., Zabihi, H., Rezaie, F., Asadzadeh, A., Wolf, I. D., Langat, P. K., Khosravi, I., Beiranvand Pour, A., Mohammad Nataj, M., & Pradhan, B. (2021). Earthquake Vulnerability Assessment for Urban Areas Using an ANN and Hybrid SWOT-QSPM Model. Remote Sensing13(22), 4519. https://doi.org/10.3390/rs13224519
  9. Allen, R. M., & Melgar, D. (2019). Earthquake early warning: Advances, scientific challenges, and societal needs. Annual Review of Earth and Planetary Sciences47(1), 361-388. https://doi.org/10.1146/annurev-earth-053018-060457
  10. Amador Luna, D., Alonso-Chaves, F. M., & Fernández, C. (2024). Kernel Density Estimation for the Interpretation of Seismic Big Data in Tectonics Using QGIS: The Türkiye–Syria Earthquakes (2023). Remote Sensing16(20), 3849. https://doi.org/10.3390/rs16203849
  11. Azad, S. S., Philip, H., Dominguez, S., Hessami, K., Shahpasandzadeh, M., Foroutan, M., ... & Lamothe, M. (2015). Paleoseismological and morphological evidence of slip rate variations along the North Tabriz fault (NW Iran). Tectonophysics640, 20-38. https://doi.org/10.1016/j.tecto.2014.11.010
  12. Babolhavaegi, H. R. et al. (2023). Assessment of seismic vulnerability in urban and rural health service centers of Hamadan Province using GIS. Health in Emergencies and Disasters Quarterly, 8(3), 201–210. http://dx.doi.org/10.32598/hdq.8.3.494.1
  13. Cesca, S. (2020). Seiscloud, a tool for density-based seismicity clustering and visualization. Journal of Seismology24(3), 443-457.https://doi.org/10.1007/s10950-020-09921-8
  14. Doğan, A., Başeğmez, M., & Aydın, C. C. (2025). Assessment of the seismic vulnerability in an urban area with the integration of machine learning methods and GIS. Natural Hazards121(8), 9613-9652. https://doi.org/10.1007/s11069-025-07185-4
  15. Fayaz, M., Romshoo, S., Rashid, I., & Chandra, R. (2023). Earthquake Vulnerability Assessment of the Built Environment in Srinagar City, Kashmir Himalaya, Using GIS. Natural Hazards and Earth System Sciences Discussions2023, 1-35. https://doi.org/10.5194/nhess-23-1593-2023
  16. Greco, A., Pluchino, A., Barbarossa, L., Caliò, I., Martinico, F., & Rapisarda, A. (2017). A simplified model based on self-organized criticality framework for the seismic assessment of urban areas. arXiv preprint arXiv:1711.03391. https://doi.org/10.48550/arXiv.1711.03391
  17. Han, S. W., & Choi, Y. S. (2008). Seismic hazard analysis in low and moderate seismic region-Korean peninsula. Structural Safety30(6), 543-558. https://doi.org/10.1016/j.strusafe.2007.10.004
  18. Hasti, F., Rouhi, H., Pezhooli, N., SalmanMahiny, A., & Rostami, H. (2022). Zoning and spatial vulnerability assessment with emphasis on infrastructure using GIS (case study: Kurdistan Province, Iran). Arabian Journal of Geosciences, 15(115). https://doi.org/10.1007/s12517-021-09383-3
  19. Hotovec‐Ellis, A. J., Shiro, B. R., Shelly, D. R., Anderson, K. R., Haney, M. M., Thelen, W. A., ... & Johanson, I. A. (2022). Earthquake‐derived seismic velocity changes during the 2018 caldera collapse of Kīlauea volcano. Journal of Geophysical Research: Solid Earth127(2), e2021JB023324. https://doi.org/10.1029/2021JB023324
  20. Karimi Ghotbabadi, F. and zangiabadi, A. (2023). Preparation of scenarios to improve the resilience of new urban habitations against earthquake risk the case study of Isfahan metropolitan. Geographical Urban Planning Research (GUPR)11(2), 175-193. https://doi.org/10.22059/jurbangeo.2023.348871.1735. [In Persian].
  21. Karimzadeh, S., Cakir, Z., Osmanoğlu, B., Schmalzle, G., Miyajima, M., Amiraslanzadeh, R., & Djamour, Y. (2013). Interseismic strain accumulation across the North Tabriz Fault (NW Iran) deduced from InSAR time series. Journal of Geodynamics66, 53-58. https://doi.org/10.1016/j.jog.2013.02.003
  22. Kwon, J., Zheng, Y., & Jun, M. (2023). Flexible spatio-temporal Hawkes process models for earthquake occurrences. Spatial Statistics54, 100728. https://doi.org/10.1016/j.spasta.2023.100728
  23. Leggieri, V., Mastrodonato, G., & Uva, G. (2022). GIS multisource data for the seismic vulnerability assessment of buildings at the urban cale. Buildings12(5), 523.  https://doi.org/10.3390/buildings12050523
  24. Matin SS, Pradhan B. Earthquake-Induced Building-Damage Mapping Using Explainable AI (XAI). Sensors. (2021); 21(13):4489. https://doi.org/10.3390/s21134489
  25. Mehrpooyan, M., Jami, M., Khatibi, M.M., & Sarhadi, N. (2016). Active faulting along the Tabriz Fault (Northwest Iran). Geography and Regional Urban Planning Journal, 6(19), 201–216. [In Persian].
  26. Meshkini, A. and Alipour, S. (2024). Analysis of the social resilience of housing in urban areas against earthquakes: the case study of areas of the 15th district of Tehran. Geographical Urban Planning Research (GUPR)12(3), 1-22. http://doi.org/10.22059/jurbangeo.2024.378878.1963. [In Persian].
  27. Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature communications11(1), 3952. https://doi.org/10.1038/s41467-020-17591-w
  28. Petersen, M. D., Shumway, A. M., Powers, P. M., Field, E. H., Moschetti, M. P., Jaiswal, K. S., ... & Witter, R. C. (2024). The 2023 US 50-state national seismic hazard model: Overview and implications. Earthquake Spectra40(1), 5-88. https://doi.org/10.1177/8755293019878199
  29. Petersen, M. D., Shumway, A. M., Powers, P. M., Mueller, C. S., Moschetti, M. P., Frankel, A. D., ... & Zeng, Y. (2020). The 2018 update of the US National Seismic Hazard Model: Overview of model and implications. Earthquake Spectra36(1), 5-41. https://doi.org/10.1177/87552930231215428
  30. Poor Mohammadi, M. R., Yousefi Shahir, H. and Hoseinzadeh Dalir, K. (2018). Resilience of Vital Landuses against Earthquake Disaster in Tabriz Metropolis. Geographical Urban Planning Research (GUPR)6(1), 55-74. https://doi.org/10.22059/jurbangeo.2018.247162.826. [In Persian].
  31. Rizza, M., Vernant, P., Ritz, J. F., Peyret, M., Nankali, H., Nazari, H., ... & Masson, F. (2013). Morphotectonic and geodetic evidence for a constant slip-rate over the last 45 kyr along the Tabriz fault (Iran). Geophysical Journal International193(3), 1083-1094. https://doi.org/10.1093/gji/ggt041
  32. Sadrykia, M., Delavar, M. R., & Zare, M. (2017). A GIS-based fuzzy decision making model for seismic vulnerability assessment in areas with incomplete data. ISPRS International Journal of Geo-Information6(4), 119. https://doi.org/10.3390/ijgi6040119
  33. Sammartano, G., Avena, M., Fillia, E., & Spanò, A. (2023). Integrated HBIM-GIS Models for Multi-Scale Seismic Vulnerability Assessment of Historical Buildings. Remote Sensing15(3), 833. https://doi.org/10.3390/rs15030833
  34. Sauti, N. S., Daud, M. E., Kaamin, M., & Sahat, S. (2021). GIS spatial modelling for seismic risk assessment based on exposure, resilience, and capacity indicators to seismic hazard: A case study of Pahang, Malaysia. Geomatics, Natural Hazards and Risk12(1), 1948-1972. https://doi.org/10.1080/19475705.2021.1947903
  35. Skurativskyi, S., Mykulyak, S., Semenova, Y., & Skurativska, K. (2025). Cluster and statistical analysis of spatial earthquake patterns in the South Caucasus region. Acta Geophysica, 1-15.
  36. Statistical Center of Iran. (2022). National population and housing statistics. https://amar.thmporg.ir. [In Persian].
  37. Talebian, M., & Jackson, J. (2004). A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophysical Journal International, 156(3), 506–526. https://doi.org/10.1111/j.1365-246X.2004.02092.x
  38. Tavakoli, B., & Ghafory-Ashtiany, M. (2017). Seismic hazard assessment of Iran. Journal of Seismology, 21(2), 357-371. https://doi.org/10.1007/s10950-016-9619-4
  39. United States Geological Survey (USGS). (2023). What magnitude does damage begin to occur in an earthquake? U.S. Geological Survey. https://www.usgs.gov/faqs/what-magnitude-does-damage-begin-occur-earthquake
  40. Wang, Y., & Chen, H. (2019). Geological structures and seismic risk assessment in tectonic zones. Journal of Geophysical Research, 124(6), 567-583. https://doi.org/10.1029/2018JB016472
  41. Yamagishi, Y., Saito, K., Hirahara, K., & Ueda, N. (2021). Spatio-temporal clustering of earthquakes based on distribution of magnitudes. Applied Network Science6(1), 71. https://doi.org/10.1007/s41109-021-00413-3
  42. Yariyan, P., Ali Abbaspour, R., Chehreghan, A., Karami, M., & Cerdà, A. (2021). GIS-based seismic vulnerability mapping: a comparison of artificial neural networks hybrid models. Geocarto International37(15), 4312–4335. https://doi.org/10.1080/10106049.2021.1892208
  43. Yariyan, P., Avand, M., Soltani, F., Ghorbanzadeh, O., & Blaschke, T. (2020). Earthquake Vulnerability Mapping Using Different Hybrid Models. Symmetry, 12(3), 405. https://doi.org/10.3390/sym12030405
  44. Zhang, L., Tao, Z., & Wang, G. (2022). Assessment and determination of earthquake casualty gathering area based on building damage state and spatial characteristics analysis. International Journal of Disaster Risk Reduction67, 102688. https://doi.org/10.1016/j.ijdrr.2021.102688