ارزیابی پایداری و تعیین اندازۀ بهینۀ جمعیت شهر مشهد بر اساس وضعیت منابع آبی

نوع مقاله: پژوهشی - کاربردی

نویسندگان

1 دکتری جغرافیا و برنامه‌ریزی شهری، دانشیار دانشگاه فردوسی مشهد، گروه جغرافیا

2 دانشجوی دکتری، دانشگاه فردوسی مشهد، رشتۀ جغرافیا و برنامه‌ریزی شهری

چکیده

پژوهش حاضر در مرحلۀ اول به ارزیابی پایداری شهر مشهد در ارتباط با منابع آبی بر اساس مدل‌های توسعۀ شهری پایدار پیشنهادشده توسط هاتون اختصاص دارد و سپس جمعیت بهینۀ مشهد را بر اساس دو گزینۀ سازمان آب و فاضلاب برای تأمین آب مورد نیاز در سال 1395، با احتساب سد دوستی و ارداک و بدون احتساب این دو سد تعیین می‌کند. بر اساس ماهیت هدف‌گذاری، از روش تحقیق ترکیبی از نوع تودرتو استفاده شد؛ چرا که اطلاعات کیفی پشتوانه‌ای برای تحلیل‌های کمی محسوب می‌شود. در این راستا با استفاده از مطالعات کتابخانه‌ای فرم‌های پایدار شهری بررسی شدند و در ادامه، مدل‌های هاتون در ارتباط با شبکۀ آب و فاضلاب شهری شناسایی گردیدند. وضعیت منابع آبی استان، دشت مشهد و شهر مشهد از طریق اسناد مرتبط تعیین گردید و سپس با استفاده از تحلیل‌های کمی، جمعیت بهینۀ شهر بر اساس دو گزینۀ سازمان آب و فاضلاب محاسبه شد. نتایج نشان می‌دهد دشت مشهد از منابع آب زیرزمینی استان 2 درصد آن را داراست. در حالی که 97/65 درصد جمعیت شهری استان در این دشت و به‌ویژه در شهر مشهد ساکن‌اند و 42 درصد آب مورد نیاز از منابع سطحی تأمین می‌گردد که 7/92 درصد آن متعلق به سد دوستی است. این سد در فاصلۀ 220 کیلومتری شهر مشهد واقع است و از کل فاضلاب خانگی تولیدشده، 30 درصد آن بازیافت می‌شود. بنابراین، بر اساس مدل‌های شهری پایدار هاتون، مشهد در ارتباط با منابع آبی شهر پایداری نیست و بر اساس عدم وابستگی به خارج از حوزۀ نفوذ (بدون احتساب سد دوستی و ارداک) 1192660 نفر و حتی با وابستگی به خارج از حوزۀ نفوذ 550459 نفر مازاد جمعیت دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Sustainability and the Optimal Population based on Water Resources in Mashhad

نویسندگان [English]

  • Mohammad Rahim Rahnama 1
  • Lia Shaddel 2
1 Associate Professor, Department of Geography, Ferdowsi University of Mashhad, Iran
2 PhD Candidate in Geography and Urban Planning, Ferdowsi University of Mashhad, Iran
چکیده [English]

Introduction
By 2050, 70% of all population is expected to live in urban areas. Rapid urbanization will lead to the serious water scarcity and contradiction between water demand and supply as well. Also, increase in urban water demand due to population growth has turned to a major concern. Planning and water resource management must be supported by national executives since water resources are facing with the serious issues as a result of the threats of the population growth and climate change.
With the increase of size and density of population, required water resources must be supplied from the out-of-city resources and this raises the question that: “Is there a real capacity for the urban development based on water resources?” Thus, it is inevitable that we must move towards urban planning, sustainable development and optimal population depending on the water resources.
Following the presentation of sustainable development concept, the sustainable city models were presented. In the models, the planners should focus on creation of the cities with less input of energy, materials and less output of pollution. The studies of Haughton on sustainable city models were very helpful and each model presents different strategies for the water and sewage network. Some of the models are including the models of redesigning cities and independent cities. Proposing suitable patterns for the form and shape of cities, also specifying the optimal population size can be considered as steps towards protection of natural resources and reaching sustainable development.
Mashhad, as the center of Razavi Khorasan Province, is located in the Mashhad plain with an arid climate. This is considered as the second most populated metropolitan of Iran and, also, is twelve times as long as the second city of the province. Thus, this province has a mono-central structure and it is also the second greatest religious metropolitan of the world. In addition to the population dwelling there, it annually welcomes about 20 million of pilgrims. One of the most important facilities is drinking water which faces innumerable problems specifically in the summer when the hot weather and the large number of pilgrims increase the need for water. Thus, water shortage becomes more and more obvious. All this is happening while in 1966 in Mashhad plain to provide water was forbidden.
Therefore, addition to keeping the use of this plain to provide the needed water depends on the neighboring realms and to achieve a sustainable management of water resources, Mashhad should be directed toward a sustainable form.
Hence, the ultimate purposes of this study are at first evaluation of the sustainability of Mashhad in terms of water resources by employing the sustainable urbandevelopment models proposed by Haughton and the second determination of the optimal population of the city in 2016 according to the two options of the Water and Sewage Organization of Mashhad to provide the needed water and consumption capitation in 2016.
Methodology
Due to its purposeful nature, this study has used mixed hybrid methodology to consider supportive qualitative data for quantitative analyses. Thus, in order to assess Mashhad’s sustainability in connection with water resources, the forms were scrutinized through library research. Then, Haughton’s studies on urban water and sewage network were identified. In the studies, reduction of permeation basin, sewage treatment, reduction of city size, and supply management were investigated. Also, using qualitative approach, province’s water resources condition, Mashhad plain, and Mashhad itself were calculated through analysis of related documents. Finally, Mashhad’s water condition was analyzed based on current documents and the necessity of application of procedures to gain sustainable development.
At this point, we analyzed the most significant plans for supplying Mashhad’s water resources studied and applied in recent years.  These studies are including substitution of backwater of the sewage refinery, and building Dousti and Ardak dams. The research attempts to specify the optimal population using quantitative approach, the average need of water for the resident population, for consumption  per capita, for pilgrim per capita, and the average usual urban need of water in 2016. The data have been obtained from the minutes of the Water and Sewage Organization of Iran.
Results and Discussion
The results indicate that Mashhad plain is among the critical plains in water resources. From total underground water resources, only 2% is remained while 65.97% of urban population of the province living in Mashhad plain. Mashhad City is the biggest urban spot on the plain. In the first 5 months of 2014, from total provided water of the city, 42% were related to surface resources, so that about 92.7% from was Dousi dam, 3.1% from Karde dam, and 4% from Toroq dam. This matter shows the dependence of Mashhad on outside of permeation basin. Dousti dam is located in 220 km of Mashhad and until the end of 2012; nearly 14217 billion Rials were spent. Evident show that Dousti dam supply is about to end and it cannot be dependent on for long. The results also show that approximately one third of produced sewage has been recycled and great effort should be made in this regard. Plan of water transfer from Ardak dam is under implementation but due to delays it won’t be utilized yet and hence Mashhad would face water shortage in 2016 even with Ardak dam supply.
Conclusion
Therefore, based on the water supply resources, the condition of recycling sewage and comparison with the guidelines of Haughton’s sustainable city models, it can be said that Mashhad’s model totally depends on outside resources and Mashhad City is not a sustainable urban center in regard to water resources. According to two options of Water and Sewage Organization of Mashhad for providing the required water in 2016, the city has surplus population. With the number of pilgrims, based on independence from permeation basin (without Ardak and Dousti dams) and on the dependence on permeation basin, the city has surplus population of 1,192,660 and 550,459 people, respectively. The optimal population is 1,933,340 for the first option and 2,575,541 people for the second option with surplus population even with dependence on outside the permeation basin. Proposed solution for moving towards the sustainability and sustainable management of water resources is to decentralize the population of the city and to convert the mono-central structure of the city into multi-central structure through Haughton‘s models.

کلیدواژه‌ها [English]

  • Mashhad
  • optimal population
  • Sustainability
  • water resources
اکبری، نعمت‌الله؛ عسگری، علی؛ فرهمند، شکوفه؛ (1385). تحلیل و توزیع اندازۀ شهرها در سیستم شهری ایران، فصلنامۀ پژوهش‌‌های اقتصادی، سال ششم، شمارۀ 4.

آمارنامۀ استان خراسان رضوی، 1391.

آمارنامۀ شهر مشهد، (1390). معاونت برنامه‌ریزی و توسعۀ شهرداری مشهد.

آمایش استان خراسان رضوی، (1391). جهاد دانشگاهی مشهد، معاونت پژوهشی.

اصغری مقدم، محمدرضا؛ (1387). جغرافیای طبیعی شهر اقلیم آب و سیل‌خیزی در برنامه‌ریزی شهری، انتشارات دانشگاه آزاد اسلامی واحد تهران مرکز.

ببران، صدیقه؛ هنربخش، نازلی؛ اکرامی، عطیه؛ (1388). توسعۀ پایدار و محیط زیست 6، مجمع تشخیص مصلحت نظام، پژوهشکدۀ تحقیقات استراتژیک، گروه پژوهشی مطالعات بین‌الملل.

براون، لستر؛ (1387). طرح امید دو آینده محیط زیست، مترجم حمید تراوتی، انتشارات جهاد دانشگاهی، مشهد.

پیله‌ور، علی‌اصغر؛ پوراحمد، احمد؛ (1383). روند رشد و توسعۀ کلان‌شهرهای کشور، مطالعه موردی مشهد، فصلنامۀ پژوهش‌‌‌های جغرافیایی، شمارۀ 4، صص 121-103.

پوراحمد، احمد؛ حسینی، سیدعلی؛ حسینی، سید محمد؛ نصیری، محمد؛ (1392). بررسی گسترش افقی شهر مشهد در چند دهۀ اخیر و تأثیر آن بر منابع آب، پژوهش‌های جغرافیای انسانی، (3)46، 504-485.

ترنر، تام؛ (1376). شهر همچون چشم‌انداز؛ نگرشی فراتر از نوگرایی به طراحی و برنامه‌ریزی شهری، ترجمۀ فرشاد نوریان، تهران، شرکت پردازش و برنامه‌ریزی شهری.

حسینی، سیداحمد؛ باقری، علی؛ (1391). مدل‌سازی پویایی سیستم منابع آب دشت مشهد برای تحلیل استراتژی‌های توسعۀ پایدار، آب و فاضلاب، شمارۀ 4، صص 39-28.

خزانه‌داری، لیلی؛ زابل عباسی، فاطمه؛ قندهاری، شهرزاد؛ کوهی، منصوره؛ ملبوسی، شراره؛ (1388). دورنمایی از وضعیت خشکسالی ایران طی سی سال آینده، مجلۀ جغرافیا و توسعۀ نهایی، شمارۀ دوازدهم، صص 98-83.

ذهبیون، باقر؛ (1381). اثرات تغییر اقلیم بر روی منابع آب، وزارت نیرو، کمیتۀ ملی سدهای بزرگ.

رهنما، حسین؛ میراثی، سهراب؛ (1393). خشکسالی و بحران آب در دشت‌های ایران، مطالعۀ موردی: دشت مرودشت و خانمیرزا در استان فارس و چهارمحال بختیاری، فصلنامۀ بین‌المللی پژوهشی تحلیلی منابع آب و توسعه، (10)2، صص 154-139.

رهنما، محمدرحیم؛ غلامرضا، عباس‌زاده؛ (1387). اصول مبانی و مدل‌های سنجش فرم کالبدی شهر، انتشارات جهاد دانشگاهی مشهد.

سازمان آب و فاضلاب شهر مشهد، 1393.

عابدین درکوش، سعید؛ نصیری، حسین؛ (1389). بررسی و برآورد اندازۀ بهینۀ شهرهای ایران به روش تابع مازاد، اقتصاد شهر، (7)89، صص 83-71.

کارشناس سازمان آب و فاضلاب شهر مشهد، 1393.

گزارش عملکرد مصوبات هیئت دولت، (1392). شمارۀ مصوبۀ 8795/34871.

لشکری، الهام؛ خلج، مهرشاد؛ (1390). اصول پایداری در اقلیم گرم و خشک ایران با تأکید بر شهرهای کهن، انتشارات گنج هنر.

منفرد، یوسف؛ حسینی، سید محمود؛ (1384). پیامدهای کمی طرح جامع تأمین آب شرب مشهد بر منابع زیرزمینی، پنجمین کنفرانس هیدرولیک ایران، 17 لغایت 19 آبان‌ماه.

مهندسین مشاور طوس آب، (1392). طرح تأمین آب شرب، صنعت و خدمات در دشت مشهد.

نخستین ماهنامۀ مدیریت بهم پیوستۀ منابع آب، (1388). معاونت هماهنگی حوضه‌های آبریز، شمارۀ اول.

ولایتی، سعدالله؛ توسلی، محمد؛ (1370). منابع و مسائل آب استان خراسان، انتشارات آستان قدس رضوی.

 ولایتی، سعدالله؛ (1376). آب و جغرافیای آب‌ها، انتشارات خراسان.

----------؛ (1392). منابع و مسائل آب در ایران با تأکید بر بحران آب، انتشارات همدل.

Bao, C and Fang, C., (2007). Water resources constraint force on urbanization in water deficient regions: A case study of the Hexi corridor, arid area of NW china, Ecological Economics, 62(2007), 508-517.

Blowers, A., (1994). Planning for Sustainable Environment:A Report by the Town and Country Planning Association, p.6.

Field, C. B., Barros, V. R., Mach, K. and Mastrandrea, M., (2014). Climate change: impacts, adaptation, and vulnerability, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

Jenks, M. and Jones, C., (2010). Dimension of the sustainable city, Springer Dordrecht Heidelberg London: New York.

Jones, C. and MacDonald, C., (2004). Sustainable urban form and real estate markets, The Annual European Real Estate Conference. Milan. 2-5June.

Kathelene, L., Lynn, J., Greenwade, A., Sullivan, W. and Lung, Q., (2010). Colorado Review Water Management and Landuse Planning Integration, Prepared by the Center for Systems Integration on behalf of the Colorado Water Conservation Board and the Colorado Department of Natural Resources.

Lundqvist, J., Appasamy, P. and Nelliyat, P., (2003). Dimensions and Approaches for Third World City Water Security, theRoyal Society, 358(2003), 1985-1996.

McDonald, R.I., Grenn, P., Balk, D., Fekete, B.M., Revenga, C., Todd, M. and Montgomery, M., (2011). urban growth, climate change and fresh water avaibility, Proceeding of the National Academy of Sciences, 108(15), 6312-6317.

Nair,S., George, B., Malano, H.M. and Arora, M., (2014). Nawarathna B. Water–energy–greenhouse gas nexus of urban water systems: review of concepts, state-of-art and methods, Resource Conserve Recycle, 89 (2014), 1–10.

Pruneau, D., Lang, M., Kerry, J., Fortin, G., Langis, J. and Liboiron, L., (2014). Leaders of sustainable development projects: Resources used and lesson learned in a context of environmental education? Journal of Education for Sustainable Development, 8(2), 155-169.

Seto, K.C. and Satterthwaite, D., (2010). Interactions between urbanization and global environmental change, Current Opinion in Environmental Sustainability, 2(3), 127-128.

Sheikh Azim,A., Razavian,M., (2013). Analysis moving towards sustainable development of a city with emphasis on the quality of urban life: The case of Noor, Journal of environment and urbanization asia,4(1), 31-56.

Sirinivasan, V., Seto, K.C., Emerson, R. and Gorelick, S.M., 2013, the impacts of urbanization on water vulnerability: A coupled human-environment system approach for Chennai, India. Journal of Global Environmental Change, 23 (2013), 229-239.

Sustainable Sydney 2030 Community Strategic Plan, (2014). Available at www.cityofsydney.nsw.gov.au

Townend. K.W. and Cheeseman. R.Ch. (2005). Guidline for the evaluation ans assessment of the sustainable use of resources and of wastes management at healthcare facilities, Waste Management and Research, 23 (2005), 398-408.

Unalan, D., (2011). why cities cannot be sustainable: governance and planning for Istanbul, Local Economy, 24(4), 305-313.

UNESCO., (2014). Water in the post-2015 development agenda and sustainable development goals, International Hydrological Programme.

United Nation. (2012). World Urbanization Prospects: The 2011 Revision Highlights (New York: United Nations Department of Economic and Social Affairs/Population Division), Available from: http://esa.un.org/unup/pdf/WUP2011 Highlights.pdf

U.S Environmental Protection Agency., (2004). Protection water resources with smart growth. EPA 231-R-04-002, May.