بررسی اثر ساختار شهری، پوشش گیاهی و داده های مورد استفاده بر صحت نقشه سطوح نفوذناپذیر شهری با تأکید بر داده‌های چند منبعی

نوع مقاله : پژوهشی - کاربردی

نویسندگان

گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده جغرافیا، دانشگاه تهران، تهران، ایران

10.22059/jurbangeo.2024.380831.1979

چکیده

باتوجه‌به تأثیر قابل‌توجه گسترش سطوح نفوذناپذیر بر اکوسیستم شهری، تهیه اطلاعات دقیق و به‌روز این سطوح عامل مهمی در برنامه‌ریزی و مدیریت پایدار شهری محسوب می‌شود. داده‌های سنجش‌ازدور و به‌ویژه تصاویر هوابرد  پتانسیل بالایی در ارائه اطلاعات مذکور داشته و در سال‌های گذشته با موفقیت بالایی، در این راستا مورداستفاده قرار گرفته‌اند. علیرغم کاربرد وسیع این داده‌ها در تهیه اطلاعات سطوح نفوذناپذیر شهری، قابلیت اطمینان و صحت خروجی این فرایند همچنان به بررسی بیشتر نیاز دارد؛  صحت نهایی نقشه های تولید شده از عوامل متعددی تاثیر می پذیرد که در این تحقیق با بکارگیری الگوی طبقه‌بندی دقیق و جزئی و استفاده از داده‌های پهپاد و ماهواره سنتینل، تأثیر پارامترهای داده، ساختار شهری و پوشش گیاهی بر صحت نقشه‌های خروجی مورد ارزیابی قرار گرفت. نتایج نشان داد که هر سه عامل می‌توانند باعث ایجاد عدم اطمینان قابل‌توجهی در نقشه‌های خروجی گردند. پوشش گیاهی به عنوان یکی از مهمترین موانع ثبت عکس العمل واقعی عوارض توسط سنجنده ها، می‌تواند تا 10 درصد کاهش در مساحت سطوح نفوذناپذیر برآورد شده نسبت به مساحت واقعی را سبب شود که این مقدار تحت تاثیر تراکم پوشش گیاهی می باشد. همچنین تغییر ساختار شهری در مناطق مختلف و تغییر داده مورداستفاده نیز می‌تواند باعث تغییر 20 درصدی در شاخص صحت کلی گردد. نتایج این تحقیق می‌تواند در ارائه بینش صحیح نسبت به قابلیت اطمینان نقشه سطوح نفوذناپذیر و توسعه روشهای بهبود آن مورداستفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

The influence of urban stractures, vegetation cover, and utilized data in urban impervious surface mapping from multi-source data

نویسندگان [English]

  • Ali Abdolkhani
  • Sara Attarchi
  • seyed kazem alavipanah
Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran
چکیده [English]

ABSTRACT
Given the significant impact of expanding impervious surfaces on the urban environment, obtaining accurate and up-to-date information about impervious surfaces (IS) is important in urban planning and sustainable management. Remote sensing data, especially aerial photos, have a high potential to provide the mentioned information and have been successfully used in recent years. Despite the widespread use of these data in urban impervious surfaces (UIS) mapping, the reliability and accuracy of the final map still need further investigation. Therefore, in this study, using a detailed and precise classification scheme, drone, and Sentinel satellite data, the impact of three parameters including utilized data, urban structure, and vegetation canopy on the output maps accuracy was evaluated. The results showed that all three factors are of great importance and may cause significant uncertainty in the output maps. Vegetation cover can lead to up to 10% underestimate in the IS. Additionally, changes in urban structure in different areas and changes in the utilized data can also result in a 20% change in the overall accuracy. Results from this work can be used to provide a proper understanding of the reliability of remote sensing products and depict directions for future methodological development
Extended Abstract
Introduction
Urban development and the resulting changes in land cover can have a significantly negative impact on natural habitats, microclimates, and urban hydrological systems. This is primarily due to the replacement of natural surfaces with impervious ones, such as streets, buildings, and parking lots which prevent water infiltration. In line with the sustainable development of cities, it is of great importance to have accurate and detailed information of these surfaces to monitor their growth and study their impacts. Remote sensing has proved useful to provide spatially explicit information about urban areas. Remote sensing data includes various types, such as images with high spectral, high spatial or high temporal resolution. Each has its own previledge and shortcomings. These data has complementary nature; as an example, backscattering values in Sentinel-1 polarimetric bands govern by the surface roughness and moisture content or reflectance in RGB bands deponds on the color. Although many studies have focused on extracting this information from remote sensing data, key issues like the accuracy of final maps, the factors affecting it and the spatial distribution of errors have not been thoroughly addressed. Therefore, this study aims to evaluate and quantify the impact of some various influential factors including vegetation, urban structure, and the data utilized.
 
Methodology
In order to allow a quantitative comparison, this research was conducted in two distinct blocks under varying condition conditions in the city of Ahvaz located in the southwest of Iran. For this purpose, initially, the UAV data for two blocks was classified using the classification scheme with 18 subclasses and the random forest algorithm. Subsequently, the UAV RGB image was fused with the Sentinel 1 data, and features such as NDVI, NDBI, and texture were extracted using a feature-based algorithm. The random forest classification algorithm was done.
The results from various classifications were assessed and compared using 1911 random training and validation samples.  Additionally, the tree canopy map derived from the classification was intersected with the map of streets, residential blocks and park impervious surfaces, which was prepared using the municipality database, and the results were evaluated.
 
Results and discussion
The results showed:

When using only drone data, the random forest algorithm achieved an overall accuracy and Kappa coefficient of 0.826 and 0.816, respectively, in block A. However, in block B, these accuracy parameters were significantly lower, at 0.612 and 0.587. Given that the data, algorithm and pattern used in both blocks are identical, the decrease in accuracy could be attributed to the changes in the urban structure relative to the flight lines or differences in the height distribution between the two areas.
The fusion of Sentinel and UAV data fusion resulted in a significant improvement in classification accuracy, raising the overall accuracy from 0.612 to 0.8. An assessment of the subclass’s accuracy revealed that the paved sidewalk subclass experienced the highest accuracy improvement, with a 54% increase.
Due to the vegetation canopy obscuring impervious surfaces, 9% of the Block A and approximately 3% of the Block B streets have been incorrectly classified as vegetation.
Expressing the error caused by vegetation as a fraction of the canopy area rather than the impervious surfaces makes the stated error percentage more accurately.

 
Conclusion
The main conclusions of this study can be summarized as follows:

By utilizing the multi-source data (RGB UAV, spectral indices from Sentinel-2, polarimetric bands of Sentinel-1 and textures), impervious surfaces can be extracted with a high level of detail (17 classes) and acceptable accuracy. Because, these data has complementary nature and the joint use of them will increase the classification accuracy.
Irregular urban structures can increase classification errors due to the significant changes in features direction relative to the view angle, especially in the case of short-range photogrammetry. Therefore, the effect of urban structure on impervious surface classification accuracy depends on the utilized dataset.
Urban impervious surfaces are frequently underestimated because they are covered by tree canopies. The errors caused by these obscured surfaces vary across different parts of the city and do not follow a specific pattern.

-The results of this work can enhance our understanding of the reliability of remote sensing products and provide guidance for future methodological developments.
 
Funding
There is no funding support.
 
Authors’ Contribution
Authors contributed equally to the conceptualization and writing of the article. All of the authors approved the content of the manuscript and agreed on all aspects of the work declaration of competing interest none.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
 We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • UAV
  • Urban Impervious Surfaces
  • Reliability
  • Urban Structures
  • Vegetation
  1. عطارچی، سارا. (1398). کارایی شاخص‌های راداری در استخراج سطوح نفوذناپذیر شهری با استفاده از تصویر رادار تمام پلاریمتریک. پژوهش‌های جغرافیای برنامه‌ریزی شهری، 7(4)، 837-854.
  2. Abdolkhani, A., Attarchi, S., & Alavipanah, S. K. (2024). A new classification scheme for urban impervious surface extraction from UAV data. Earth Science Informatics, 1-20. doi.org/10.1007/s12145-024-01430-3
  3. Ahmad, M. N., Shao, Z., Javed, A., Ahmad, I., Islam, F., Skilodimou, H. D., & Bathrellos, G. D. (2024). Optical–SAR Data Fusion Based on Simple Layer Stacking and the XGBoost Algorithm to Extract Urban Impervious Surfaces in Global Alpha Cities. Remote Sensing, 16(5), 873. https://doi.org/10.3390/rs16050873
  4. Ahmad, M. N., Shao, Z., Xiao, X., Fu, P., Javed, A., & Ara, I. (2024). A novel ensemble learning approach to extract urban impervious surface based on machine learning algorithms using SAR and optical data. International Journal of Applied Earth Observation and Geoinformation, 132, 104013. https://doi.org/10.1016/j.jag.2024.104013
  5. Alberti, M., Booth, D., Hill, K., Coburn, B., Avolio, C., Coe, S., & Spirandelli, D. (2007). The impact of urban patterns on aquatic ecosystems: An empirical analysis in Puget lowland sub-basins. Landscape and Urban Planning, 80(4), 345-361.  doi.org/10.1016/j.landurbplan.2006.08.001
  6. Attarchi, S. (2019). Efficiency evaluation of SAR-derived indices in urban impervious surfaces extraction using full polarimetric image. Geographical Urban Planning Research (GUPR), 7(4), 837-854. 10.22059/jurbangeo.2019.288561.1162 [In Persian]
  7. Attarchi, S. (2020). Extracting impervious surfaces from full polarimetric SAR images in different urban areas. International Journal of Remote Sensing, 41(12), 4644-4663. doi.org/10.1080/01431161.2020.1723178
  8. Cadenasso, M. L., Pickett, S. T., & Schwarz, K. (2007). Spatial heterogeneity in urban ecosystems: reconceptualizing land cover and a framework for classification. Frontiers in Ecology and the Environment, 5(2), 80-88. doi.org/10.1890/1540-9295(2007)5[80:SHIUER]2.0.CO;2
  9. Caggiano, M. D., Tinkham, W. T., Hoffman, C., & Cheng, A. S. (2016). High resolution mapping of development in thewildland-urban interface using object based image extraction. 2(10), 1-12. 10.1016/j.heliyon.2016.e00174
  10. Carlson, T. (2003). Applications of remote sensing to urban problems. Remote sensing of environment, 86(3), 273-274. Doi:10.1016/S0034-4257(03)00073-7
  11. Collier, C. G. (2006). The impact of urban areas on weather. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences. applied meteorology and physical oceanography, 132(614), 1-25. doi.org/10.1256/qj.05.199
  12. Crommelinck, S., Bennett, R., Gerke, M., Nex, F., Yang, M. Y., & Vosselman, G. (2016). Review of automatic feature extraction from high-resolution optical sensor data for UAV-based cadastral mapping. Remote Sensing, 8(8), 689.  doi.org/10.3390/rs8080689
  13. Dekker, R. J. (2003). Texture analysis and classification of ERS SAR images for map updating of urban areas in the Netherlands. IEEE Transactions on geoscience and remote sensing, 41(9), 1950-1958. DOI: 10.1109/TGRS.2003.814628
  14. Elamin, A., & El-Rabbany, A. (2022). UAV-based multi-sensor data fusion for urban land cover mapping using a deep convolutional neural network. Remote Sensing, 14(17), 4298.  DOI: doi.org/10.3390/rs14174298
  15. Fernandez Galarreta, J., Kerle, N., & Gerke, M. (2015). UAV-based urban structural damage assessment using object-based image analysis and semantic reasoning. Natural hazards and earth system sciences, 15(6), 1087-1101. doi.org/10.5194/nhess-15-1087-2015
  16. Gong, P., Li, X., & Zhang, W. (2019). 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Science Bulletin, 64(11), 756-763. doi.org/10.1016/j.scib.2019.04.024
  17. Guo, Q., Zhang, J., Guo, S., Ye, Z., Deng, H., Hou, X., & Zhang, H. (2022). Urban tree classification based on object-oriented approach and random forest algorithm using unmanned aerial vehicle (uav) multispectral imagery. Remote Sensing, 14(16), 3885. Doi.org/10.3390/rs14163885
  18. Hall-Beyer, M. (2017). Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. International Journal of Remote Sensing, 38(5), 1312-1388. Doi.org/10.1080/01431161.2016.1278314
  19. Hatt, B. E., Fletcher, T. D., Walsh, C. J., & Taylor, S. L. (2004). The influence of urban density and drainage infrastructure on the concentrations and loads of pollutants in small streams. Environmental management, 34, 112-124. https://doi.org/10.1007/s00267-004-0221-8
  20. Hou, Y., Ding, W., Liu, C., Li, K., Cui, H., Liu, B., & Chen, W. (2022). Influences of impervious surfaces on ecological risks and controlling strategies in rapidly urbanizing regions. Science of the Total Environment, 825, 153823. Doi.org/10.1016/j.scitotenv.2022.153823
  21. Jazayeri, I., Rajabifard, A., & Kalantari, M. (2014). A geometric and semantic evaluation of 3D data sourcing methods for land and property information. Land use policy, 36, 219-230. Doi.org/10.1016/j.landusepol.2013.08.004
  22. Ji, L., Gong, P., Geng, X., & Zhao, Y. (2015). Improving the accuracy of the water surface cover type in the 30 m FROM-GLC product. Remote Sensing, 7(10), 13507-13527. Doi.org/10.3390/rs71013507
  23. Jiang, L., Liao, M., Lin, H., & Yang, L. (2009). Synergistic use of optical and InSAR data for urban impervious surface mapping: a case study in Hong Kong. International Journal of Remote Sensing, 30(11), 2781-2796. Doi.org/10.1080/01431160802555838
  24. Kun, Y., Meie, P., Rong, Y., Yi, S., & Chao, M. (2016). Water environmental impacts of impervious surfaces and control measures in Dianchi Lake Basin, China. Chinese Journal of Environmental Engineering, 10(10), 5407-5412.
  25. Lin, Y., Zhang, H., Lin, H., Gamba, P. E., & Liu, X. (2020). Incorporating synthetic aperture radar and optical images to investigate the annual dynamics of anthropogenic impervious surface at large scale. Remote sensing of environment, 242, 111757. Doi.org/10.1016/j.rse.2020.111757
  26. Liu, W., & Yamazaki, F. (2012). Object-based shadow extraction and correction of high-resolution optical satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(4), 1296-1302. DOI: 10.1109/JSTARS.2012.2189558
  27. Lu, D., Hetrick, S., & Moran, E. (2011(. Impervious surface mapping with Quickbird imagery. International Journal of Remote Sensing, 32(9), 2519-2533. Doi.org/10.1080/01431161003698393
  28. Mao, T., Fan, Y., Zhi, S., & Tang, J. (2022). A Morphological Feature-Oriented Algorithm for Extracting Impervious Surface Areas Obscured by Vegetation in Collaboration with OSM Road Networks in Urban Areas. Remote Sensing, 14(10), 2493. Doi.org/10.3390/rs14102493
  29. Ooi, M., Chan, A., Ashfold, M., Morris, K., Oozeer, M., & Salleh, S. A. (2017). Numerical study on effect of urban heating on local climate during calm inter-monsoon period in greater Kuala Lumpur, Malaysia. Urban climate, 20, 228-250. Doi.org/10.1016/j.uclim.2017.04.010
  30. Pauleit, S., Ennos, R., & Golding, Y. (2005). Modeling the environmental impacts of urban land use and land cover change—a study in Merseyside, UK. Landscape and Urban Planning, 71(2-4), 295-310. Doi.org/10.1016/j.landurbplan.2004.03.009
  31. Puissant, A., Hirsch, J., & Weber, C. (2005). The utility of texture analysis to improve per‐pixel classification for high to very high spatial resolution imagery. International Journal of Remote Sensing, 26(4), 733-745. Doi.org/10.1080/01431160512331316838
  32. Rau, J.-Y., Chen, N.-Y., & Chen, L.-C. (2002). True orthophoto generation of built-up areas using multi-view images. Photogrammetric Engineering and Remote Sensing, 68(6), 581-588.  http://worldcat.org/issn/00991112
  33. Schmitt, M., & Zhu, X. X. (2016). Data fusion and remote sensing: An ever-growing relationship. IEEE Geoscience and Remote Sensing Magazine, 4(4), 6-23. 10.1109/MGRS.2016.2561021
  34. Shao, G., & Wu, J. (2008). On the accuracy of landscape pattern analysis using remote sensing data. Landscape Ecology, 23, 505-511. doi.org/10.1007/s10980-008-9215-x
  35. Shao, Z., Cheng, T., Fu, H., Li, D., & Huang, X. (2023(. Emerging Issues in Mapping Urban Impervious Surfaces Using High-Resolution Remote Sensing Images. Remote Sensing, 15(10), 2562.  Doi.org/10.3390/rs15102562
  36. Shao, Z., Fu, H., Fu, P., & Yin, L. (2016). Mapping urban impervious surface by fusing optical and SAR data at the decision level. Remote Sensing, 8(11), 945. Doi.org/10.3390/rs8110945
  37. Simpson, J. J., & Stitt, J. R. (1998). A procedure for the detection and removal of cloud shadow from AVHRR data over land. IEEE Transactions on Geoscience and Remote Sensing, 36(3), 880-897. DOI: 10.1109/36.673680
  38. Sun, Z., Zhao, X., Wu, M., & Wang, C. (2019). Extracting urban impervious surface from worldView-2 and airborne LiDAR data using 3D convolutional neural networks. Journal of the Indian Society of Remote Sensing, 47, 401-412. Doi.org/10.1007/s12524-018-0917-5
  39. Van der Linden, S., & Hostert, P. (2009). The influence of urban structures on impervious surface maps from airborne hyperspectral data. Remote sensing of environment, 113(11), 2298-2305. Doi.org/10.1016/j.rse.2009.06.004
  40. Weng, Q. (2012). Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote sensing of environment, 117, 34-49. Doi.org/10.1016/j.rse.2011.02.030
  41. Wu, C., & Murray, A. T. (2003). Estimating impervious surface distribution by spectral mixture analysis. Remote sensing of environment, 84(4), 493-505. Doi.org/10.1016/S0034-4257(02)00136-0
  42. Wu, W., Miao, Z., Xiao, Y., Li, Z., Zhang, A., Samat, A., Du, N., Xu, Z., & Gamba, P. (2020). New scheme for impervious surface area mapping from SAR images with auxiliary user-generated content. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5954-5970. 10.1109/JSTARS.2020.3027507
  43. Yang, F., Matsushita, B., & Fukushima, T. (2010). A pre-screened and normalized multiple endmember spectral mixture analysis for mapping impervious surface area in Lake Kasumigaura Basin, Japan. ISPRS Journal of photogrammetry and remote sensing, 65(5), 479-490. Doi.org/10.1016/j.isprsjprs.2010.06.004
  44. Yao, H., Qin, R., & Chen, X. (2019). Unmanned aerial vehicle for remote sensing applications—A review. Remote Sensing, 11(12), 1443. Doi.org/10.3390/rs11121443
  45. Yuan, F., & Bauer, M. E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote sensing of environment, 106(3), 375-386. Doi.org/10.1016/j.rse.2006.09.003
  46. Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583-594. Doi.org/10.1080/01431160304987
  47. Zhang, H., & Xu, R. (2018). Exploring the optimal integration levels between SAR and optical data for better urban land cover mapping in the Pearl River Delta. International Journal of Applied Earth Observation and Geoinformation, 64, 87-95. Doi.org/10.1016/j.jag.2017.08.013
  48. Zhang, H., Lin, H., & Wang, Y. (2018). A new scheme for urban impervious surface classification from SAR images. ISPRS Journal of photogrammetry and remote sensing, 139, 103-118. Doi.org/10.1016/j.isprsjprs.2018.03.007
  49. Zhang, H., Lin, H., Li, Y., Zhang, Y., & Fang, C. (2016). Mapping urban impervious surface with dual-polarimetric SAR data: An improved method. Landscape and Urban Planning, 151, 55-63. Doi.org/10.1016/j.landurbplan.2016.03.009
  50. Zhang, H., Wan, L., Wang, T., Lin, Y., Lin, H., & Zheng, Z. (2019). Impervious surface estimation from optical and polarimetric SAR data using small-patched deep convolutional networks: A comparative study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7), 2374-2387. 10.1109/JSTARS.2019.2915277
  51. Zhang, J., Li, P., & Wang, J. (2014). Urban built-up area extraction from Landsat TM/ETM+ images using spectral information and multivariate texture. Remote Sensing, 6(8), 7339-7359. Doi.org/10.3390/rs6087339
  52. Zhang, Y., Zhang, H., & Lin, H. (2014). Improving the impervious surface estimation with combined use of optical and SAR remote sensing images. Remote sensing of environment, 141, 155-167. Doi.org/10.1016/j.rse.2013.10.028
  53. Zhou, G., Chen, W., Kelmelis, J. A., & Zhang, D. (2005). A comprehensive study on urban true orthorectification. IEEE Transactions on geoscience and remote sensing, 43(9), 2138-2147. DOI: 10.1109/TGRS.2005.848417