تحلیل تاب‌آوری اجتماعی مسکن محلات شهری در برابر زلزله مطالعه موردی: محلات منطقه ۱۵ شهر تهران

نوع مقاله : پژوهشی - کاربردی

نویسندگان

گروه جغرافیا و برنامه‌ریزی شهری، دانشگاه تربیت مدرس، تهران، ایران

10.22059/jurbangeo.2024.378878.1963

چکیده

آسیب‌های ناشی از زلزله مجموعه سیستم‌های کالبدی، اجتماعی، اقتصادی شهر را در برمی‌گیرد. تاب‌آوری اجتماعی در برابر بحران به‌عنوان توانایی یک سیستم یا بخشی از یک سیستم برای بهبود بعد از یک فاجعه تعریف می‌شود. شاخص‌های تاب‌آوری اجتماعی از طریق تحلیل محتوا و ارزیابی نهایی از دیدگاه اساتید استخراج‌شده است. هدف پژوهش سنجش میزان تاب‌آوری اجتماعی در دو شرایط فرضی با شاخص‌های یکسان و استخراج عوامل و عناصر تأثیرگذار از دیدگاه شهروندان است. جامعه آماری پژوهش محلات 20 گانه منطقه 15 شهر تهران است. نمونه آماری با نتایج فرمول کوکران 401 مورد به‌صورت مساوی در 20 محله است. تجزیه‌وتحلیل اطلاعات نیز با توجه به سؤال‌های و نوع داده‌ها با استفاده از نرم‌افزار آمارهای GIS و SPSS و روش آماری تحلیل عامل اکتشافی جهت تعیین تعداد عوامل و میزان تأثیرات عوامل و عناصر و روش تاپسیس نیز جهت سطح‌بندی محلات است. نتایج و یافته‌ها حاکی از آن است که منطقه از وضعیت مناسبی از تاب‌آوری برخوردار نیستند و ساکنین ارزیابی خوبی از میزان تاب‌آوری خود و محیط ندارند. بااین‌وجود در پرسشنامه قبل از بحران، محله مظاهری دارای رتبه اول وضعیت مناسب و در پرسشنامه بعد از بحران نیز محله شوش دارای رتبه اول وضعیت مناسب تاب‌آوری در هر دو موقعیت نیز محله مسعودیه با رتبه آخر دارای نامناسب‌ترین تاب‌آوری است. همچنین عوامل جمعیت فعال، تعداد خانوار و تعداد زنان و کودکان دارای بیشترین تأثیر در میزان تاب‌آوری قبل و بعد از زلزله بوده‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of the social resilience of housing in urban areas against earthquakes: the case study of areas of the 15th district of Tehran

نویسندگان [English]

  • Abolfazl Meshkini
  • Somayeh Alipour
Department of Geography and Urban Planning, Tarbiat Modares University, Tehran, Iran
چکیده [English]

ABSTRACT
The damage caused by the earthquake includes the physical, social, and economic systems of the city. Social resilience against crisis is defined as the ability of a system or part of a system to recover after a disaster. Social resilience indicators have been extracted through content analysis and final evaluation from professors' point of view. The research aims to measure the level of social resilience in two hypothetical conditions with the same indicators and extract influential factors and elements from the citizens' point of view. The statistical population of the research is 20 neighborhoods in District 15 of Tehran. The statistical sample with the results of Cochran's formula is 401 cases in 20 neighborhoods. Analyzing the information according to the questions and type of data using GIS and SPSS statistics software and the statistical method of exploratory factor analysis to determine the number of factors and the extent of the effects of factors and elements and the TOPSIS method is also used to stratify the localities. The results and findings indicate that the region does not have a good state of resilience, and the residents do not have a good assessment of the resilience of themselves and the environment. Nevertheless, in the pre-crisis questionnaire, Mazaheri neighborhood has the first rank of good condition, and in the post-crisis questionnaire, Shush neighborhood has the first rank of good resilience. In both situations, the Masoudiyeh neighborhood, with the last rank, has the most unfavorable resilience. Also, the factors of active population, the number of households and the number of women and children have had the most significant effect on the level of resilience before and after the earthquake
Extended Abstract
Introduction
Earthquakes are one of the most common hazards that threaten human centers. Conquering nature to prevent earthquakes is technically unrealistic. The number of financial and life losses caused by earthquakes is increasing, and most of these losses occur in developing countries. The most common human response to natural disasters is to move to other places. In order to change this situation and improve a society's ability to plan and respond to earthquakes, it is vital. One of the important types of programs is known as resilience. Disaster resilience was used for the first time in the 1980s and refers to the concept of being able to absorb and sustain against dangerous events. Seismic resilience is a measure of society's ability to contain the effects of earthquakes and achieve timely recovery. The effects of earthquakes are different in urban contexts. One of the most important features of urban centers, especially in developing countries, is wear and tear, making these spaces vulnerable to earthquakes. The issues and problems related to the type of residential buildings, the issues caused by the materials used and the way to restore the buildings with a more or less rapid acceleration cause the movement towards the endpoint. In the seismic vulnerability of worn-out structures, the effective role of urban planning indicators, along with structural indicators, has been emphasized in earthquake prevention programs.
 
Methodology
The current research aims to measure social resilience and evaluate the factors and elements that are effective in the resilience of urban areas of the type of applied research. In terms of nature, it is a descriptive and analytical research that examines the influencing factors in the resilience of localities. Information was collected using a questionnaire of residents to measure the resilience of neighborhoods. It includes collecting data about residents' views before and after the earthquake crisis. In the review of experts' opinions, all the localities of District 15 were evaluated. For this purpose, Cochran's formula was used to extract the number of samples. According to the total population of the district, which is equal to 659,468, 400 samples were determined and divided among 20 neighborhoods, and 20 samples were assigned to each neighborhood. SPSS statistical software and exploratory factor analysis statistical method were used to analyze the data. In the second stage, after obtaining the importance of each variable in the level of social resilience from the residents' point of view, it was used to rank the neighborhoods of the district using the TOPSIS ranking and decision-making model.
 
Results and discussion
Measuring the level of resilience is also the most effective method in measuring and extracting the factors that influence the level of resilience and vulnerability of the society from the residents' point of view. This research used a questionnaire to measure social resilience in two situations before and after the earthquake. First, the general characteristics of the respondents were examined, which shows that the researchers conducted the research with a predetermined program and selected the respondents. This is because all the questions raised in this research require knowledge, a moderate education level, and the residential environment's nobility. The results obtained from the research model in the first part of the resilience questionnaire before the crisis, Mazaheri neighborhood of Area 1 is the most suitable, Afsarieh South neighborhood of Area 5 is the average among the neighborhoods and Masoudiyeh neighborhood of Area 6 is the most unsuitable. In the post-crisis questionnaire, according to the citizens' belief, Shush Area 1, with the first rank of TOPSIS, has the most appropriate situation, Valiasr Minai of Area 1 has an average situation compared to others, and Masoudiyeh of Area 6 has the most unfavorable situation in terms of social resilience after the earthquake.
 
Conclusion
Social resilience against earthquakes comes from different factors and also affects it by different elements. Since social resilience is related to the residents, their supervision and views are considered the most important factors and elements in reducing or increasing resilience. Among the effective factors in the social resilience of the neighborhood residents, 9 indicators have been used. Each indicator has different effects on social resilience after the earthquake, ranked according to the extent of their impact from the residents' point of view and with the research method. Also, these indicators have different effects in the stages before and after the crisis. From the point of view of the citizens living in the neighborhoods of District 15, among the indicators effective in resilience before the earthquake crisis, the first rank is the most effective factor for the human capital index and the last factor is for responsibility. Despite the existing ranking between the effective factors, the difference in the score of their effects is close to each other, so there is no significant difference between them. Among the factors that contributed to social resilience after the earthquake, the most effective factor from the citizens' point of view is human capital, and the least effective factor is the psychological readiness of society. The distinguishing point of this research from other studies is the comprehensive investigation of social resilience from the perspective of residents of the neighborhoods, each of whom has lived in the neighborhood for more than 10 years, and with the same questions or elements, it has investigated resilience before and after the earthquake crisis. In this situation, the residents imagined themselves in the state after the earthquake crisis and answered the questions that these questions are the elements that determine the strengths or weaknesses of the neighborhood or themselves in increasing or decreasing their social resilience. The results obtained in this research can be effective in the plans to increase the resilience of the localities, especially the localities with existing conditions in District 15, and be a guide for the decisions of city managers.
 
Funding
There is no funding support.
 
Authors’ Contribution
Authors contributed equally to the conceptualization and writing of the article. All of the authors approved thecontent of the manuscript and agreed on all aspects of the work declaration of competing interest none.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
 We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Social Resilience
  • Views of Citizens of Urban Areas
  • Earthquake
  • District 15
  1. امان پور، سعید؛ فیروزی، محمدعلی و شاکرمی، محمدحسین. (1400). مکان‌های ناپایدار شهری در برابر زلزله مطالعه موردی: بافت فرسوده شهر خرم‌آباد. فصلنامه آمایش محیط 14(54) 98-75. https://dorl.net/dor/20.1001.1.2676783.1400.14.54.4.2
  2. بهزاد افشار، کتایون و اکبری، پرویز. (1398). تبیین و تحلیل معیارهای کاربری برنامه‌ریزی زمین در کاهش خطر زلزله جهت افزایش تاب‌آوری شهری (نمونه موردی: شهر سنندج). نگرش‌های نو در جغرافیای انسانی (جغرافیای انسانی)، 11(2)، 337-353
  3. https://dorl.net/dor/20.1001.1.66972251.1398.11.2.18.5
  4. پوراحمد، احمد؛ زیاری، کرامت اله؛ ابدالی، یعقوب و اله قلی پور، سارا. (1398). تحلیل معیارهای تاب‌آوری در بافت فرسوده شهری در برابر زلزله با تأکید بر تاب‌آوری کالبدی (مورد: منطقه 10 شهرداری تهران). پژوهش و برنامه‌ریزی شهری، 10(36)، 1-21
  5. https://dorl.net/dor/20.1001.1.22285229.1398.10.36.1.3
  6. حسینی، سید جواد. (1387). مشارکت پایدار مردمی در نوسازی و بازسازی بافت‌های فرسوده شهری. چاپ اول، مشهد: انتشارات سخن‌گستر.
  7. رازانی، اسد، نوذری، کمال، و رفیعیان، مجتبی. (1400). تبیین ابعاد و مؤلفه‌های الگوی مناسب مدیریت بحران زلزله در بافت‌های فرسوده شهر تهران. مطالعات شهر ایرانی اسلامی، 11(43)، 25-42.
  8.  https://dorl.net/dor/20.1001.1.2228639.1399.10.40.2.6
  9. رضویان، محمدتقی؛ توکلی نیا، جمیله؛ فرزادبهتاش، محمدرضا و خزایی، مصطفی. (1396). تحلیل و ارزیابی تاب‌آوری اجتماعی بافت فرسوده منطقه 12 شهر تهران در مواجهه با سوانح طبیعی. مدیریت سرمایه اجتماعی، 4(4)، 595-612.
  10. عبدالله، بهار؛ ذبیحی، حسین و سعیده زرآبادی، زهرا سادات. (1397). سنجش میزان تاب‌آوری کالبدی محلات شهری در برابر زلزله با به‌کارگیری روش ویکور نمونه موردی: منطقه 10، شهر تهران. نشریه شهر ایمن، 1 (2) 6-1
  11. عبداله زاده ملکی، شهرام؛ خانلو، نسیم؛ زیاری، کرامت اله و شالی امینی، وحید. (1398). اولویت‌سنجی عوامل مؤثر بر تاب‌آوری اجتماعی در برابر مخاطرات طبیعی با تأکید بر زلزله. هویت شهر، 13(37)، 45-58.
  12. عفیفی، محمدابراهیم. (1401). ارزیابی تاب‌آوری بافت فرسوده شهر در برابر زلزله با استفاده از GIS (مطالعه موردی: منطقه 2 شهرداری بندرعباس). مطالعات جغرافیایی نواحی ساحلی، 3(2) 69-88. https://doi.org/10.22124/gscaj.2022.21511.1142
  13. کلانتری خلیل آباد، حسین و پوراحمد، احمد. (۱۳۸۵). الگوها و فنون برنامه‌ریزی مرمت بافت تاریخی شهرها. مجله جغرافیایی سرزمین، 3(7)، 116-105.
  14. کمانرودی موسی. (1385). معیارهای فرسودگی شهری و برنامه‌های مداخله. اندیشه ایرانشهر، 2(10)، 29-35.
  15. محمدپور، صابر؛ زالی، نادر و پوراحمد، احمد. (1395). تحلیل شاخص‌های آسیب‌پذیری در بافت‌های فرسوده شهری با رویکرد مدیریت بحران زلزله (مطالعه موردی: محله سیروس تهران). پژوهش‌های جغرافیای انسانی (پژوهش‌های جغرافیایی)، 48(1)، 33-52
  16. https://doi.org/10.22059/jhgr.2016.51273
  17. ملکی، سعید؛ امانپور، سعید؛ صفایی پور، مسعود؛ پورموسوی، سید نادر و مودت، الیاس. (1396). ارزیابی طیف تاب‌آوری اجتماع‌های شهری در برابر بحران زلزله بر اساس سناریوهای شدت مختلف و استفاده از نمایه COPRAS  نمونة موردی شهر ایلام. فصلنامه پژوهش و برنامه‌ریزی شهری، 8 (31)، 40-19. https://dorl.net/dor/20.1001.1.22285229.1396.8.31.2.0
  18. مودت، الیاس؛ گرمسیری، پرستو و مؤمنی، کورش. (1398). برآورد پراکنش تاب‌آوری شهری از منظر بحران زلزله با استفاده از الگوی آمار فضایی (مطالعه موردی: شهر ایلام). برنامه‌ریزی منطقه‌ای، 9(36)، 119-134.
  19. https://dorl.net/dor/20.1001.1.22516735.1398.9.36.8.7

نبوی رضایی، هاله سادات؛ حبیبی، سیدمحسن و طبیبیان، منوچهر. (1397). نقش ساختار شهر در تاب‌آوری آن در برابر زلزله. هویت شهر، 12(35)، 29-38.

  1. Abdullah, B., Zabihi, H., & Saeeda Zarabadi, Z. S. (2017). Measuring the physical resilience of urban areas against earthquakes by using the Vicor method (Case example: District 10, Tehran. Safe City, 1 (2) 6-1[In Persian]
  2. Abdulzadeh Maleki, Sh., Khanlou, N., Ziari, K. E., & Shali Amini, V. (2018). Prioritization of factors affecting social resilience against natural hazards with an emphasis on earthquakes. City Identity, 13(37), 45-58. [In Persian]
  3. Adger, W. N. (2000). Social and ecological resilience: Are they related? Progress in Human Geography, 24(3), 347–364. http://doi.org/10.1191/030913200701540465
  4. Afifi, M. I. (2022). Evaluating the resilience of the worn-out fabric of the city against earthquakes using GIS (case study: Zone 2 of Bandar Abbas Municipality). Geographical studies of coastal areas, 3(2) 69-88. https://doi.org/10.22124/gscaj.2022.21511.1142 [In Persian]
  5. Allan, P. & Bryant, M. (2010). The Critical Role of Open Space in Earthquake Recovery: A Case Study. NZSEE Conference. New Zealand.
  6. Amanpour, S., Firozi, M. A, & Shakrami, M. H. (2021). Unstable urban places against earthquakes (Case study: worn-out texture of Khorramabad city). Environmental Studies Quarterly 14(54) 98-75 https://dorl.net/dor/20.1001.1.2676783.1400.14.54.4.2 [In Persian]
  7. Asadzadeh, A., & Kötter, T. (2015). Towards urban sustainability via disaster resilience assessment: a new approach towards constructing seismic resilience metrics. WIT Transactions on the Built Environment, 168, 963-974.
  8. Behzad Afshar, K., & Akbari, P. (2018). Explanation and analysis of land use planning criteria in reducing earthquake risk to increase urban resilience (case example: Sanandaj city). New perspectives in human geography (human geography), 11(2), 337-353. https://dorl.net/dor/20.1001.1.66972251.1398.11.2.18.5 [In Persian]
  9. Berkes, F., & Ross, H. (2013). Community resilience: Toward an integrated approach. Society & Natural Resources, 26(1), 5–20. http://doi.org/10.1080/08941920.2012.736605
  10. Bernardini, G., & Ferreira, T. M. (2020). Simulating to Evaluate, Manage and Improve Earthquake Resilience in Historical City Centers: Application To An Emergency Simulation-based Method to the Historic Centre of Coimbra. Gottingen: Copernicus GmbH. https://doi.org/10.5194/isprs-archives-XLIV-M-1-2020-651-2020
  11. Bhandari, A. & Regmi, D. (2015). “A very weak homes”, Kathmandu, available at: www.ekantipur. com/kantipur/2072/2
  12. Bilham, R. (2014). Aggravated earthquake risk in South Asia, 2014. 103-141. https://doi: 10.1016/b978-0-12- 394848-9.00005-5.
  13. Bodin, P., & Wiman, B. (2004). Resilience and Other Stability Concepts in Ecology: Notes on their Origin. Validity, and Usefulness. ESS Bulletin. 2. 33-43.
  14. Bozzaa, A., Aspronea, D., Parisia, F., & Manfredia, G., (2017). Resilience Assessment of Historic Centres: Methodology and Applications, Safety, Reliability, Risk, Resilience and Sustainability of Structures and Infrastructure. c 2017 TU-Verlag Vienna, ISBN 978-3-903024-28-1
  15. Burton, H. V., Deierlein, G., Lallemant, D., & Lin, T. (2016). Framework for incorporating probabilistic building performance in the assessment of community seismic resilience. Journal of Structural Engineering, 142 (8) . https://doi.org/10.1061/(ASCE)ST.1943-541X.0001321
  16. Cohen, O., Leykin, D., Lahad, M., Goldberg, A., & Aharonson-Daniel, L. (2013). The conjoint community resiliency assessment measure as a baseline for profiling and predicting community resilience for emergencies. Technological Forecasting and Social Change, 80(9), 1732–1741. http://doi.org/10.1016/j.techfore.2012.12.009
  17. Cutter, S. L. (2016). The landscape of disaster resilience indicators in the USA. Natural Hazards, 80(2), 741–758. http://doi.org/10.1007/s11069-015-1993-2
  18. Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., & Webb, J. (2008). A place-based model for understanding community resilience to natural disasters. Global Environmental Change, 18(4), 598–606. http://doi.org/10.1016/j.gloenvcha.2008.07.013
  19. Cutter, SL. (2016). The landscape of disaster resilience indicators in the USA. Nat Hazards 80(2),741–758. DOI: 10.1007/s11069-015-1993-2
  20. Damsari, A.G.U., Thayaparan, M. & Fernando, T., (2022). State of the art in risk sensitive urbandevelopment: A systematic literature review. In: Sandanayake, Y.G., Gunatilake, S. and Waidyasekara, K.G.A.S. (eds). Proceedings of the 10th World Construction Symposium, 24(26), 731-742.
  21. David, E. (2015). Improving community resilience to natural events, Civil Engineering and Environmental Systems, 32(1) 1-13. https://doi.org/10.1080/10286608.2015.1011626
  22. Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Yan, K., Brandimarte, L., & Blöschl, G. (2014). Debates-Perspectives on socio-hydrology: Capturing feedbacks between physical and social processes. Water Resour. Res., 51, 4770–4781, https://doi.org/10.1002/2014WR016416, 2015.
  23. Gaillard, J. C., & Jigyasu, R. (2016). Proving the case: Measurement and evidence. In World Disasters Report - Resilience: Saving Lives Today, Investing for Tomorrow (38–69). Geneva: International Federation of Red Cross and Red Crescent Societies.
  24. Garshasbi, M., & Kabir, G. (2022). Earthquake resilience framework for a stormwater pipe infrastructure system integrating the best worst method and Dempster–Shafer theory. Sustainability, 14(5), 2710. https://doi.org/10.3390/su14052710
  25. Ghasemi, P., Khalili-Damghani, K., Hafezalkotob, A., & Raissi, S. (2020). Stochastic optimization model for distribution and evacuation planning (A case study of Tehran earthquake). Socio-Economic Planning Sciences, 71, 100745 http://dx.doi.org/10.1016/j.seps.2019.100745
  26. Hosseini, S.J. (2008). Sustainable participation of the people in the renovation and reconstruction of worn-out urban tissues. Mashhad, Sokhon Gostar Publications, first edition. [In Persian]
  27. Joyner, M. D., & Amp, Sasani, M. (2020). Building performance for earthquake resilience. Engineering Structures, 210(2). 1103710, http://dx.doi.org/10.1016/j.engstruct.2020.110371
  28. Juchimiuk, J., & Januszkiewicz, K. (2019). Envisioning infrastructure to reduce disaster’s impact to cities during the climate change area being elements of smart cities. IOP Conference Series.Earth and Environmental Science, 214(1) https://doi.org/10.1088/1755-1315/214/1/012141
  29. Khalfan, M., Tait, M.J. & El-Dakhakhni, W.W. (2015). Seismic risk assessment of no engineered residential buildings: state of the practice. Nat. Hazards Rev, 16(3) https://doi.org/10.1061/(ASCE)NH.1527-6996.0000164
  30. Kalantry Khalilabad, H., & Pour Ahmad, A. (2008). Patterns and techniques of planning for the restoration of the historical fabric of cities. Sarzamen Geographical Magazine, 3(7),116-105. [In Persian]
  31. Kontokosta, C. E., & Malik, A. (2018). The Resilience to Emergencies and Disasters Index: Applying big data to benchmark and validate neighborhood resilience capacity. Sustainable Cities and Society, 36, 272–285. http://doi.org/10.1016/j.scs.2017.10.025
  32. Kwok, A., Doyle, E. E. H., Becker, J., Johnston, D., & Paton, D. (2016). What is ‘social resilience’? Perspectives of disaster researchers, emergency management practitioners, and policymakers in New Zealand. International Journal of Disaster Risk Reduction, 19, 197–211.
  33. Lam, L. M., & Kuipers, R. (2019). Resilience and disaster governance: Some insights from the 2015 Nepal earthquake. International Journal of Disaster Risk Reduction, 33, 321-331. doi:https://doi.org/10.1016/j.ijdrr.2018.10.017
  34. Li, H., Erqi, X., & Zhang, H. (2021). High-resolution assessment of urban disaster resilience: A case study of futian district, shenzhen, china. Natural Hazards, 108(1), 1001-1024. doi:https://doi.org/10.1007/s11069-021-04717-6
  35. Liu, X., Li, S., Xu, X., & Jingshu, L. (2021). Integrated natural disasters urban resilience evaluation: The case of china. Natural Hazards, 107(3), 2105-2122. doi:https://doi.org/10.1007/s11069-020-04478-8
  36. Maleki, S., Amanpour, S., Safaipour, M., Pourmousavi, S. N., & Mudat, E. (2016). Evaluation of the resilience spectrum of urban communities against the earthquake crisis based on different intensity scenarios and using the COPRAS profile (Case example of Ilam city). Quarterly of Urban Planning and Research 8(31), 19-40. https://dorl. net/dor/20.1001.1.22285229.1396.8.31.2.0[In Persian]
  37. Maudet, E., Garmsiri, S., & Momeni, K. (2018). Estimation of distribution of urban resilience from the perspective of earthquake crisis using spatial statistics model (case study: Ilam city). Regional Planning, 9(36), 119-134. https://dorl.net/dor/20.1001.1.22516735.1398.9.36.8.7[In Persian]
  38. Meimandi Parizi, S & Taleai, M & Sharifi, A. (2022). A GIS-Based Multi-Criteria Analysis Framework to Evaluate Urban Physical Resilience against Earthquakes. Sustainability, 14, 5034. http://dx.doi.org/10.3390/su14095034
  39. Meshkini, A., Bozorgvar, A., & Alipour, S. (2024) Spatial analysis of the physical resilience of old urban neighborhoods against earthquakes: a case study of the old texture of Tehran. GeoJournal, 89(3) DOI: 10.1007/s10708-024-11101-x
  40. Mohammadpour, S., Zali, N., & Pourahmad, A. (2015). Analysis of vulnerability indicators in worn-out urban tissues with the approach of earthquake crisis management (case study: Siros neighborhood of Tehran). Human Geography Research (Geographic Research), 48(1), 33-52. https://doi.org/10.22059/jhgr.2016.51273. [In Persian]
  41. Monteiro, A. (2022). Climate Risk Mitigation and Adaptation Concerns in Urban Areas: A Systematic Review of the Impact of IPCC Assessment Reports. Climate 10(8), 115. https://doi.org/10.3390/cli10080115
  42. Musa's, A. (2006). Urban deterioration criteria and intervention programs. Andisheh Iranshahr, 2(10), 29-35. [ In Persian]
  43. Nabavi Rezaei, H. S., Habibi, S. M., & Tabibian, M. (2017). The role of city structure in its resilience against earthquakes. City Identity, 12(35), 29-38. [In Persian]
  44. Narjabadifam, P., Noori, M., Taciroglu, E., Zhang, J., Khoshnevis, B., Cardone, D., & Orlando Fabio, S(2022). Sustainable Earthquake Resilience with the Versatile Shape Memory Alloy (SMA)-Based
  45. Nohrstedt, D., Hileman, J., Mazzoleni, M., Di Baldassarre, G., & Parker, C. F. (2022). Exploring disaster impacts on adaptation actions in 549 cities worldwide. Nature Communications, 13(1) https://doi.org/10.1038/s41467-022-31059-z
  46. Oluwafemi, J.O.., Ofuyatan, O.M.., Sadiq, O.M., Oyebisi, S.O., Abolarin, J.S., & Babaremu, K.O, (2018). Review of World Earthquakes. International Journal ofCivil Engineering and Technology, 9(9), 440-464.
  47. Pamungkas, A., Larasati, K. D., & Iranata, D. (2022). Building emergency infrastructure requirement to enhance urban resilience for earthquake: A case study of surabaya building regulation. IOP Conference Series. Earth and Environmental Science, 1095(1), 012007. https://doi.org/10.1088/1755-1315/1095/1/012007
  48. Parvin, G. A., Surjan, Rahman, A., & Shaw, R. (2016). Urban Risk, City Government, and Resilience BT - Urban Disasters and Resilience in Asia. ButterworthHeinemann, 34–21. http://dx.doi.org/10.1016/B978-0-12-802169-9.00003-3
  49. Paton, D., Mamula-Seadon, L., & Selway, K. L. (2013). Community resilience in Christchurch: Adaptive responses and capacities during earthquake recovery (GNS Science Report 2013/37). Lower Hutt: GNS Science.
  50. Pour Ahmad, A., Ziyari, K. E., Abdali, Y., & Qolipour, S. (2018). Analysis of resilience criteria in worn-out urban fabric against earthquakes with an emphasis on physical resilience (Case: District 10 of Tehran Municipality). Research and urban planning, 10(36).  https://dorl.net/dor/20.1001.1.22285229.1398.10.36.1.3[In Persian]
  51. Rani, G., Arun, P.A., Muktar, U., Abraham, N.A., Ansari, S. (2023). Review of Earthquake Resilience and Safety in Building Construction. In: Siddiqui, N.A., Yadav, B.P., Tauseef, S.M., Garg, S.P., Devendra Gill, E.R. (eds) Advances in Construction Safety. Springer, Singapore. https://doi.org/10.1007/978-981-19-4001-9_23
  52. Razani, A., Nowzari, K., & Rafiyan, M. (2021). Explaining the dimensions and components of the appropriate model of earthquake crisis management in the worn-out tissues of Tehran. Iranian Islamic City Studies, 11(43), 25-42. https://dorl.net/dor/20.1001.1.2228639.1399.10.40.2.6 [In Persian]
  53. Razovian, M. T., Tawaklinia, J., Farzadbehtash, M. R., & Khazaei, M. (2016). Analysis and evaluation of the social resilience of the worn-out fabric of the 12th district of Tehran in the face of natural disasters. Social Capital Management, 4(4), 595-612. [In Persian]
  54. Rutgersson, A., Kjellström, E., Haapala, J., Stendel, M., Danilovich, I., Drews, M., Wasmund,N. (2022).Natural hazards and extreme events in the Baltic Sea region. Earth System Dynamics, 13(1), 251-301. doi:https://doi.org/10.5194/esd-13-251-2022
  55. Smith, K. (1996). Environmental Hazards, Assessing Risks and Reducing Disaster. Routledge, London and New York, NY
  56. Stewart, I., & Crowley, K. (2008). Natural Hazards. doi. 10.4135/9781446215357.n9
  57. Uphoff, N. (1999). Understanding social capital: Learning from the analysis and experience of participation. In P. Dasgupta & I. Serageldin (Eds.), Social capital: A multifaceted perspective (pp. 215–249). Washington, D.C.: The World Bank.
  58. Vilimek, V., & Spilkova, j. (2009). Natural Hazards And Risks: The View From. The Junction of Natural And Social Sciences,114. http://dx.doi.org/10.37040/geografie2009114040332
  59. Wisner, B. (2003) ‘Floods and mudslides in Algiers: Why no warning?. Why poordrainage? Why?’, http://dx.doi.org/10.21203/rs.3.rs-2648607/v1
  60. Xun, X., & Yuan, Y. (2020). Research on the urban resilience evaluation with hybrid multiple attribute TOPSIS method: an example in China. Natural Hazards, 103, 557–577 https://doi.org/10.1007/s11069-020-04000-0
  61. Yenidogan, C. (2021). Earthquake-resilient design of seismically isolated buildings: A review of technology. Vibration, 4(3), 602. https://doi.org/10.3390/vibration4030035
  62. Zeng, X., Yu, Y., Yang, S., Yang, L., & Md Nazirul, I. S. (2022). Urban resilience for urban sustainability: Concepts, dimensions, and perspectives. Sustainability, 14(5), 2481. https://doi.org/10.3390/su14052481
  63. Zhang, J., Zhang, M., & Li, G. (2021). Multi-stage composition of urban resilience and the influence of pre-disaster urban functionality on urban resilience. Natural Hazards, 107(1), 447-473. https://doi.org/10.1007/s11069-021-04590-3