اثرات گسترش فضای سبز بر الگوی جزیرۀ گرمایی شهری (مطالعۀ موردی: بوستان ولایت)

نوع مقاله: پژوهشی - کاربردی

نویسندگان

1 دانشجوی دکتری آب‌وهواشناسی سینوپتیک، دانشگاه تهران

2 استادیار آب‌و‌هواشناسی، دانشگاه تهران

3 دانشیار آب‌و‌هواشناسی، دانشگاه تهران

چکیده

جمعیت شهرنشین زیاد، الگوی شهرسازی نامنظم، سرانۀ فضای سبز نامناسب و توزیع ناهمگن فضای سبز در شهر تهران سبب افزایش شدت و چندهسته‌ای شدن جزیرۀ گرمایی شده است. یکی از هسته‌های مذکور بر فراز بوستان ولایت قرار دارد. با توجه به افزایش فضای سبز در بوستان ولایت طی سال‌های اخیر و ارتباط بین شدت جزیرۀ گرمایی با فضای سبز، در این پژوهش آثار افزایش فضای سبز بر الگوی جزیرۀ گرمایی در این منطقه بررسی می‌شود. در راستای هدف مذکور، با استفاده از تصاویر ماهوارۀ گوگل و سنجنده‌های TM و OLI-TIRS به دلیل در دسترس بودن تصاویر، قدرت تفکیک مکانی مناسب که انطباق‌پذیری مناسبی را با مدل نشان می‌داد و سهولت کار با آنها، تغییرات کاربری اراضی و افزایش فضای سبز در بوستان ولایت با استفاده از نرم‌افزار ENVI 4.7 بررسی شد و نتایج آن به عنوان ورودی به مدل اقلیمی خردمقیاس Envi-met با قدرت تفکیک مکانی 20 متر برای منطقه به ابعاد 4/3 کیلومتر در 6/2 کیلومتر وارد شد. شبیه‌سازی به‌صورت ساعتی انجام گرفت که نتایج آن در این پژوهش با فواصل زمانی شش ساعته به نمایش گذاشته شد. نتایج حاکی از هم‌بستگی معنادار و قوی خروجی مدل با داده‌های ایستگاه آلودگی‌سنجی میدان بهمن بود. همچنین محدودۀ مرکزی بوستان ولایت که پوشش خاک دارد، در اغلب اوقات یک هستۀ سرمایی در این منطقه ایجاد می‌کند. همچنین، ساختمان‌های نسبتاً مرتفع در اطراف بوستان ولایت مانع از نفوذ زبانۀ هوای خنک پهنۀ بوستان به اطراف می‌شود. اثر افزایش فضای سبز بر الگوی جزیرۀ گرمایی در بوستان ولایت با افزایش تفاوت‌های دمایی بین سطوح مختلف در فصل گرم و کاهش تفاوت‌های دمایی روزانه بین سطوح در دورۀ سرد دیده می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

The Effects of Green Space Expansion on the Patterns of Urban Heat Island (Case Study: Velayat Urban Park)

نویسندگان [English]

  • Mojtaba Mahdian Mahforouzi 1
  • Ali Akbar Shamsipour 2
  • Ghasem Azizi 3
1 PhD Candidate in Synoptic Climatology, Faculty of Geography, University of Tehran, Iran
2 Assistant Professor of Climatology, Faculty of Geography, University of Tehran, Iran
3 Associate Professor of Climatology, Faculty of Geography, University of Tehran, Iran
چکیده [English]

Introduction
The megalopolis of Tehran is the most populated city of Iran with an irregular and unplanned pattern of urbanism. The situation of green spaces is far less than the standards and the distribution of green spaces in the urban area is unequal and heterogeneous. As a result, Tehran has a highly intensified and multi-core heat island located above the various industrially and residentially active regions. The heat island, by the definition, is the increase in temperature of urban area in comparison with that of the suburbs and rural regions. This phenomenon was first measured and defined by Luke Howard. It is nominated due to its spatial appearance. If temperature contours of a city are drawn, it will look like an island surrounded by water. Due to former studies, the heat island appears more in minimum temperatures.
In Tehran, because of numerous factories located in west part of the city and the effects of heat island in the country, the existence of heat island could transfer the pollutants into the urban area and henceforth, this phenomenon is of high importance in health related issues. The intensity of heat island imitates the synoptic weather patterns very much, but its spatial pattern is mainly affected by local conditions and land cover. According to the studies the intensity of Tehran’s heat island is a function of synoptic conditions but never reaches zero. Also, many other researches confirm the connection of the land use, especially from natural land use to urban cover, to the heat island. Therefore, one of the best methods to reduce the heat island intensity is to increase the green spaces. However, it may be evident that increase in the green spaces will reduce the heat island intensity, but the rate of the effects may be different. This research was carried out to model and measure the effects of green space expansion on the heat island pattern in Velayat urban park.
Methodology
To measure the green space expansion in the Velayat Park, in the first step, the images for year 2006 and 2013 were obtained using Universal Map Downloader. The images were obtained to extract the pre and post conditions of the green space. Then, the images of the Thematic Mapper sensor (TM), landsat 5, and Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS), Landsat 8, were obtained and each image was processed using ENVI 4.7. The images were divided into four specific land use classes (Asphalt, Soil, Vegetation, and Concrete- representing buildings).The field observation was also inspected for four times to increase the precision. The outputs of this step were entered the Envi-met, a Microscale non-hydrostatic simulation model, with spatial resolution of 20 meters for an area of 3.4 kilometers long and 2.6 kilometers wide.
 
 
 
Fig.1. The land uses entered to the model (Envi-met) before and after the green space expansion (right and left, respectively). Green, grey, and blue represent vegetation, buildings, and asphalt and soil surfaces (bare surfaces), respectively
Results and Discussion
After the steps were taken, the simulations were carried out. The results were produced for a 24 hours pattern, but since the patterns were somehow alike and the descriptions would take a larger article to be shown, the results were limited to 6 hours intervals with maximum like-hood. The results are shown in Figure 2.
 
 
 
Fig. 2. Simulation results for 4 Jan 2006 (upper left), 17 Jan 2013 (upper right), 2 Aug 2006 (down left), and 15 Jul 2013 (down right) at hours 06:00, 12:00, 16:00, and 24:00 for each day
Conclusion
One of the methods used to study the heat island, nowadays, is modeling of the remotely sensed images. In this research, a microclimatic model (Envi-met) was employed to simulate the effects of green spaces expansion on the spatial pattern of the heat island in the Velayat Park. The results have indicated that the central area of the Velayat Park with soil cover makes a cool island core in most hours. This core is sometimes coherent and sometimes divided into parts. Anyway, the coldest part of the core is located in the northeastern quarter. The thermal gradient is the highest in the western part of the park. The effects of green spaces expansion in this part of the park have intensified this gradient. Furthermore, it seems that in some hours, the air temperature is increased in the edge of the expanded green space. For the heat transfer, since the park is surrounded by relatively tall buildings, the heat transfer is hardly possible. It is clearly evident that around the Bahman Farhangsara (which has almost no construction), the heat and cold tongues penetrate out of Velayat Park boundaries. Hence, it could be concluded that if the height of the buildings around the park is changed, the cooling effect of the park will expand more efficiently.
It was also discovered that the effects of green space expansion are most evident at 12:00 in winter when (after the expansion) temperature differences in the central zone of the park show a reduction in comparison with those of the pre-expansion pattern. It could also be seen that the effects of the asphalt road passing through the park is almost vanished at daytime while its effects could be easily witnessed before the expansions. In summer, two points should be notified: first, in August 2nd 2006 in which the wind is southward, all temperatures are moved southward unexceptionably. The second can be seen in all times when the effects of green space expansion appear with the increase in temperature differences. It is clearly evident that in summer when the sun shine is more, the more homogenous the surfaces are the less the temperature differences will be and vice versa. In warm seasons, the rate of cooling is also different due to the variant thermal characteristics of the surfaces. Hence, in summer pattern, in both diurnal and nocturnal hours, the expansion of green spaces is equivalent to increased temperature differences. Therefore, two different thermal patterns may be seen in warm and cold seasons.  

کلیدواژه‌ها [English]

  • Green space
  • thermal pattern
  • Velayat Urban Park
  • urban heat island
آخوندزاده، مهدی؛ سراجیان، محمدرضا؛ (1386). کاربرد تصاویر ماهواره‌ای ASTER-TERRA در نمایش جزایر گرمایی در مناطق شهری، دومین همایش سالانۀ مقابله با سوانح طبیعی، دانشکدۀ فنی دانشگاه تهران.

امیری، رضا؛ علیمحمدی، عباس؛ علوی‌پناه، سیدکاظم؛ (1386). مطالعة تغییرپذیری فضایی ـ زمانی حرارت در ارتباط با کاربری - پوشش زمین در منطقة شهری تبریز با استفاده از داده‌های لندست ETM+ و TM حرارتی و انعکاسی، محیط‌شناسی، سال سی‌و‌سوم، شمارة 43، پاییز 1386، صص 107 تا 120.

رمضانی، بهمن؛ دخت‌محمد، سید مریم؛ (1389). شناخت محدودۀ مکانی تشکیل جزیرۀ گرمایی در شهر رشت، مجلۀ پژوهش و برنامه‌ریزی شهری، سال اول، شمارۀ اول، صص 64-49.

رنجبر سعادت‌آبادی، عباس؛ آزادی، مجید؛ علی اکبری بیدختی، عباسعلی؛ صادقی حسینی، سیدعلیرضا؛ (1384). مطالعة موردی جزیرة گرمایی تهران و شبیه‌سازی عددی آن، مجلۀ فیزیک زمین و فضا، جلد 31، شمارة 1، صص 63 تا 78.

رنجبر سعادت آبادی، عباس؛ اکبری بیدختی، عباسعلی؛ صادقی حسینی، سیدعلیرضا؛ (1384). آثار جزیرۀ گرمایی و شهرنشینی روی وضع هوا و اقلیم محلی در کلان‌شهر تهران بر اساس داده‌های مهرآباد و ورامین، مجلۀ محیط‌شناسی، شمارة 39، صص 59 تا 84.

رنگزن، کاظم؛ فیروزی، محمدعلی؛ تقی‌زاده، ایوب؛ مهدی‌زاده، رامین؛ (1390). بررسی و تحلیل نقش کاربری اراضی در شکل‌گیری جزایر گرمایی با استفاده از R.S و GIS، نمونۀ موردی شهر اهواز، اولین سمینار ملی کاربرد GIS در برنامه‌ریزی اقتصادی، اجتماعی و شهری، دانشگاه شهید چمران، اهواز.

شرافتی، شهاب؛ (1391). بررسی روند تغییرات مکانی- زمانی جزیرۀ گرمایی شهر تهران با استفاده از تصاویر ماهواره‌ای، پایان‌نامۀ کارشناسی ارشد سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکدۀ فنی دانشگاه تهران.

شکیبا، علیرضا؛ ضیائیان فیروزآبادی، پرویز؛ عاشورلو، داود؛ نامداری، سودابه؛ (1388). تحلیل رابطۀ کاربری و پوشش اراضی و جزایر گرمایی شهر تهران با استفاده از داده‌های +ETM، سنجش از دور و GIS ایران، سال اول، بهار 1388، شمارۀ 1، 56-39.

شمسی‌پور، علی‌اکبر؛ مهدیان ماهفروزی، مجتبی؛ حسین‌پور، زینب؛ (1391). واکاوی تغییرات مکانی هستۀ جزیرۀ گرمایی شهر تهران، پژوهش‌های جغرافیایی، سال 44، شمارۀ 3، پیاپی 81، صص 146-127.

شمسی‌پور، علی‌اکبر؛ مهدیان ماهفروزی، مجتبی؛ اخوان، هانیه؛ حسین‌پور، زینب؛ (1391). واکاوی رفتار روزانۀ جزیرۀ گرمایی شهر تهران، محیط‌شناسی، سال 38، شمارۀ 4، صص 45-56.

عبداللهی، جلال؛ محمد چراغی، سید علی؛ رحیمیان، محمدحسن؛ (1387). مقایسة آثار زیست‌محیطی تغییر کاربری اراضی بر تغییر پوشش گیاهی و دمای سطحی در مناطق شهری و غیرشهری با به‌کارگیری سنجش از دور، محیط‌شناسی، سال سی و چهارم، شمارۀ ٤٥، بهار ٨٧، صص ۹۶- 85.

عزیزی، قاسم؛ شمسی‌پور، علی‌اکبر؛ مهدیان ماهفروزی، مجتبی؛ میری، مرتضی؛ (1392). تأثیرپذیری شدت جزیرۀ گرمایی شهری تهران از الگوهای همدیدی، محیط‌شناسی، سال 39، شمارۀ 4، صص 55-66.

عزیزی، قاسم؛ (1384). تغییر اقلیم، انتشارات قومس، تهران.

غضنفری مقدم، محمدصادق؛ علیزاده، امین؛ ناصری مقدم، مهیار؛ فرید حسینی، علیرضا؛ (1389). بررسی اثر جزیرۀ گرمایی شهری بر روند تغییرات ریزش‌های جوی مشهد، نشریۀ آب و خاک، جلد 24، شمارۀ 2، خرداد و تیر، صص 366-359.

مرادزاده، محمد؛ (1378). شبیه‌سازی فیزیکی جزیرۀ گرمایی و الگوی دمای تهران، پایان‌نامۀ کارشناسی ارشد هواشناسی، مؤسسۀ ژئوفیزیک، دانشگاه تهران.

معتمدی، مینا؛ (1382). مطالعۀ اثر متقابل گردش‌های محلی ( کوهستانی) و پدیدۀ جزیرۀ گرمایی در تهران، پایان‌نامۀ کارشناسی ارشد هواشناسی، مؤسسۀ ژئوفیزیک، دانشگاه تهران.

معروف‌نژاد، عباس؛ (1390). تأثیر کاربری‌های شهری در ایجاد جزایر گرمایی (مطالعۀ تحتی: شهر اهواز)، فصلنامۀ جغرافیایی آمایش محیط، شمارۀ 14، صص 90- 65.

ملک‌پور، پیمان؛ طالعی، محمد؛ (1389). بررسی تغییرات درجۀ حرارت سطح و پوشش کاربری زمین شهری با استفاده از داده‌های سنجنده ETM+، سنجش از دور و GIS ایران، سال دوم، شمارۀ سوم، صص 102-89.

-----------؛ (1390). مدل‌سازی و ارتباط کاربری- پوشش اراضی و حرارت سطح زمین با استفاده از داده‌های سنجنده ASTER، محیط‌شناسی، سال سی و هفت، شمارۀ 58، تابستان 90، صص 42- 29.

 

- Akbari, H., Rose L. S., 2008, Urban surfaces and heat island mitigation potentials, Journal of the Human-Environmental System, 11: 85-101.

- Arbabi A., Arzjani Z, Khaledi Sh., Sabri M., 2010, Tehran Megacity analyzed using Population and Climate change, IJBSM 1(1), 13-16.

- Arbabi A., Yousefi A., 2010, a Survey on climatological elements (temperature, precipitation and relative humidity) impact on climatological changes in big city of Tehran and formation of heat islands in the last two decades, The 1 st International Applied Geological Congress, Department of Geology, Islamic Azad University - Mashad Branch, Iran, 26-28 April 2010.

- Karlessi T., Santamouris M., Synnefa A., Assimakopoulos D., Didaskalopoulos P., Apostolakis K., 2010, Development and testing of PCM doped cool colored coatings to mitigate urban heat island and cool buildings, Building and Environment, Pp 1-10.

- Mahdeloei S., Hamidi Farahani F., Shakori M.J., 2012, The role of roof gardens in saving energy and reducing the heat island phenomenon, Annals of Biological Research, 3 (4):1704-1707.

- Malakooti, H., 2010, Meteorology and air-quality in a mega-city: application to Tehran, Iran, PhD Dissertation of École des Ponts ParisTech, Universite Paris Est.

- Mousavi-Baygi, Ashraf M., Miyanabady A., 2010, The Investigation of Tehran’s Heat Island by using the Surface Ozone and Temperature Data, International Journal of Applied Environmental Sciences, Vol. 5, No. 2, pp. 189–200.

- Oberndorfer E., Lundholm J., Bass B., Coff­man R.R., Doshi H., Dunnett N., Gaffin S., Kohler M., Liu K.K.Y., Rowe B., 2007, Green Roofs as Urban Ecosystems: Ecological Structures, Functions, and Ser­vices, BioScience, 57(10): 823-833.

- Onishi, A., Cao X., Ito T., Shi F., Imura H., 2010, Evaluating the potential for urban heat-island mitigation by greening parking lots, Urban Forestry & Urban Greening, pp. 1-10.

- Pompeii W.C., Hawkins T.W., 2011, Assessing the Impact of Green Roofs on Urban Heat Island Mitigation: A Hardware Scale Modeling Approach, the Geographical Bulletin 52: 52-61.

- Rosenfeld A.H., Akbari H., Romm J.J., Pomerantz M., 1998, Cool communities: strategies for heat island.

-Savio, P., and Team, 2006, Mitigating New York City’s Heat Island with Urban Forestry, Living Roofs, and Light Surfaces, New York City Regional Heat Island Initiative Final Report, New York State Energy

- Shahmohamadi P., Cubasch U., Sodoudi S., Che-Ani A.I., 2012, Mitigating Urban Heat Island Effects in Tehran Metropolitan Area, Chapter 11 of the book: Air Pollution – A Comprehensive Perspective.

- Smith, C., Levermore, G., 2008, Designing urban spaces and buildings to improve sustainability and quality of life in a warmer world, Energy Policy, 36: 4558–4562.

- Solecki W.D., Rosenzweig C., Pope G., Parshall L., Wiencke M., 2008, The Current and Future Urban Heat Island Effect and Potential Mitigation Strategies in the Greater Newark, New Jersey Region, United States Department of Energy (DOE).

- Suomi, J., Käyhkö J., 2010, The impact of environmental factors on urban temperature variability in the coastal city of Turku, SW Finland, International Journal of Climatology, DOI: 10.1002/joc.2277.

- Synnefa, A., Karlessi T., Gaitani N., Santamouris M., Assimakopoulos D.N., Papakatsikas C., 2011, Experimental testing of cool colored thin layer asphalt and estimation of its potential to improve the urban microclimate, Building and Environment, 46: 38-44.

- Yamamato, Y., 2006, Measures to Mitigate Urban Heat Islands, Quarterly Review, vol.18.