مقایسۀ عملکرد شاخص‌های طیفی با طبقه‌بندی شی‌ءگرا در استخراج مناطق ساخته‌شده در مناطق شهری (مطالعۀ موردی: شهر تهران و شهر گرگان)

نوع مقاله : پژوهشی - کاربردی

نویسندگان

1 استادیار گروه سنجش‌ازدور و سیستم اطلاعات جغرافیایی، دانشگاه تهران

2 دانشجوی کارشناسی ارشد سنجش‌ازدور و سیستم اطلاعات جغرافیایی، دانشگاه تهران

چکیده

در پی افزایش جمعیت و رشد شهرنشینی در دهه‌های اخیر، چشم‌اندازهای طبیعی در حال تبدیل‌شدن به چشم‌اندازهای انسانی است و فضای باز شهری به مناطق ساخته‌شده تبدیل شده است. تغییرات شدید کاربری اراضی، لزوم دسترسی مدیران شهری را به اطلاعات به‌روز بیشتر کرده است. استفاده از تصاویر ماهواره‌ای سبب می‌شود تا مدیران شهری تغییرات را بهتر پایش کنند تا بتوانند در زمان مناسب تصمیم‌گیری کنند. طبقه‌بندی و استفاده از شاخص‌های استخراج‌شده از باندهای طیفی تصاویر ماهواره‌ای، از روش‌های کارآمد و مؤثر استفاده از تصاویر ماهواره‌ای در مطالعات شهری است. تاکنون شاخص‌های طیفی زیادی برای تفکیک مناطق ساخته‌شده از سایر کاربری‌ها ایجاد شده است. هدف از این پژوهش، بررسی و عملکرد چهار شاخص طیفی پرکاربرد شهری، به‌منظور تفکیک مناطق ساخته‌شده از سایر کاربری‌ها در دو شهر متفاوت و مقایسۀ آن با نتایج طبقه‌بندی شی‌ءگرا برای استخراج مناطق ساخته‌شده است. به این منظور، شاخص‌های تفاوت نرمال‌شدۀ مناطق ساخته‌شده، شاخص شهری، شاخص نرمال‌شدۀ مناطق ساخته‌شده و شاخص استخراج مناطق ساخته‌شده از تصاویر سنجندۀ OLI ماهوارۀ لندست 8 برای دو شهر تهران و گرگان محاسبه شد. برای جداسازی مناطق ساخته‌شده و ساخته‌نشده، از روش آستانه‌گذاری اتوماتیک اتسو استفاده شد. یافته‌های تحقیق نشان داد که شاخص‌های طیفی در مناطق شهری متفاوت، عملکرد یکسانی ندارند و صحت استخراج مناطق ساخته‌شده با اعمال این شاخص‌ها بر صحت طبقه‌بندی شی‌ءگرا برتری نمی‌یابد. صحت کلی طبقه‌بندی شی‌ءگرا در استخراج مناطق ساخته‌شده در شهر تهران 92 درصد و در شهر گرگان 91 درصد است. بهترین شاخص طیفی مناطق ساخته‌شده برای شهر تهران، شاخص استخراج مناطق ساخته‌شده با صحت کلی 82 درصد و برای شهر گرگان، شاخص نرمال مناطق ساخته‌شده با صحت کلی 86 درصد بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of spectral indices and object- based classification for built-up area extraction in different urban areas

نویسندگان [English]

  • Sara Attarchi 1
  • Mojtaba Poorrahimi 2
  • Vahid Isazade 2
1 Assistant professor, Remote sensing and GIS Department, Faculty of Geography, University of Tehran
2 MSc in Remote Sensing and Geographic Information System, University of Tehran
چکیده [English]

Following the increase in population and the growth of urbanization in recent decades, the natural landscape is becoming a human landscape, and the urban open space has become a constructed area. The aim of this study was to investigate the performance of four widely used urban spectral indices in order to separate the areas built from other uses in two different cities and compare it with the results of object-oriented classification to extract the constructed areas. For this purpose, the normalized difference indices of the constructed areas, the urban index, the normalized index of the constructed areas and the extraction index of the constructed areas from the OLI satellite images of Landsat 8 satellite for the two cities of Tehran and Gorgan have been calculated. Autos automatic thresholding method has been used to separate the constructed and un constructed areas. The research findings showed that spectral indicators in different urban areas do not have the same performance and the accuracy of extraction of constructed areas by applying these indicators does not exceed the accuracy of object-oriented classification. The overall accuracy of the object-oriented classification in extracting the constructed areas in Tehran is 92% and in Gorgan is 91%. The best spectral index of the constructed areas for the city of Tehran was the extraction index of the constructed areas with an overall accuracy of 82% and for the city of Gorgan, the normal index of the constructed areas with a total accuracy of 86%

کلیدواژه‌ها [English]

  • "Spectral Index"
  • "Object-oriented classification"
  • " Built-up area"
  • "Otsu 's automatic threshold"
  • "Landsat 8"
بذرافشان، محسن، امام، یحیی و سید رشید فلاح شمسی (1393). «بررسی رفتار سری زمانی بازتاب طیفی و شاخص‌های پوشش گیاهی مزارع چغندرقند با استفاده از داده‌های سنجندۀ MODIS»، نشریۀ تولید و فرآوری محصولات زراعی و باغی، دوره 4، شمارۀ 13، صص 159-170.
پناهی، رجب و کرامت‌اله زیاری (1388). «بررسی تأثیر فعالیت‌های کشت و صنعت بر شهر نوبنیاد پارس‌آباد»، پژوهش‌های جغرافیای انسانی، دوره 42، شمارۀ 70، صص 1-14.
 حجاری‌زاده، زهرا و نادر پروین (1388). «بررسی تغییرات دما و بارش تهران طی نیم قرن اخیر»، فصلنامۀ جغرافیا (برنامه‌ریزی منطقه‌ای)،  پیش شماره،  صص 43-56.
حسین‌زاده دلیر، کریم و حسن هوشیار، (1385). «دیدگاه‌ها عوامل و عناصر مؤثر توسعۀ فیزیکی شهرهای ایران»، مجلۀ جغرافیایی و توسعۀ ناحیه‌ای، دوره 16، شمارۀ 6، صص 213-225.
حسینی، هادی و سید هادی سلیمانی‌مقدم، (1385). «توسعۀ شهری و تضعیف مفاهیم محله‌ای»، فصلنامۀ مسکن و انقلاب، شمارۀ 113، صص 28-29.
رحیمی، هومن، بهزادفر، مصطفی و کرامت الله زیاری، (1398). «بازکاوی و تحلیل ساختار شهری با تأکید بر توسعۀ پایدار با استفاده از روش AHP»، دوره 12، شمارۀ 1، صص 683-704.
رضایی بنفشه، مچید، رضایی، علی و مجتبی فریدپور، (1394). «تحلیل خشک‌سالی کشاورزی استان آذربایجان شرقی با تأکید بر سنجش‌ازدور و شاخص وضعیت پوشش گیاهی»، نشریۀ دانش آب‌وخاک، دوره 25، شمارۀ 1، صص 113-123.
رضوانی، علی‌اصغر (1374). روابط متقابل شهر و روستا با تأکید بر ایران، تهران: انتشارات پیام‌نور.
رهنما، محمدرحیم و غلامرضا عباس‌زاده،  (1385). «مطالعۀ تطبیقی سنجش درجۀ پراکنش/فشردگی در کلان‌شهرهای سیدنی و مشهد»، مجلۀ جغرافیا و توسعۀ ناحیه‌ای، دوره 3، شمارۀ 6، صص 101-128
زرین، جواد و سید کاظم علوی‌پناه، (1395). بررسی تغییرات الگوی حرارتی در بازۀ زمانی 30 ساله با استفاده از باندهای حرارتی تصاویر ماهوارۀ لندست (مطالعۀ موردی: اراضی جنوبی جزیرۀ آبادان)، اولین همایش بین‌اللملی مخاطرات طبیعی و بحران‌های زیست‌محیطی ایران، راهکارها و چالش‌ها، اردبیل: دانشگاه محقق اردبیلی.
زیاری، کرامت‌اله (1382). «تحولات اجتماعی-فرهنگی ناشی از انقلاب صنعتی در توسعۀ فضایی تهران»، مجلۀ جغرافیا و توسعه، دوره 1، شمارۀ 1، صص 151-164.
سرایی، محمدحسین و زهرا جمشیدی، (1396). «بررسی الگوهای رشد کالبدی شهر ارومیه و ارائۀ یک الگوی بهینه به‌منظور افزایش فشردگی»، پژوهش‌های جغرافیای برنامه‌ریزی شهری، دوره 5، شمارۀ 2، صص 265-287.
شیعه، اسماعیل، 1379، مقدمهای بر مبانی برنامه‌ریزی شهری، تهران: انتشارات دانشگاه علم و صنعت ایران.
عمادالدین، سمیه و فخرالدین نامجو، (1393). «ارزیابی پارامترهای ژئومورفولوژیکی در توسعۀ فیزیکی شهر گرگان»، فصلنامۀ جغرافیایی سرزمین، دوره 11، شمارۀ 42، صص 87-98.
کاویانی، آزاده، فرهودی، رحمت‌الله و آزیتا رجبی، (1394). «تحلیل الگوی رشد شهر تهران با رویکرد بوم‌شناسی سیمای سرزمین»، پژوهش‌های جغرافیای برنامه‌ریزی شهری، دورة 3، شمارۀ 4، صص 407-429.
مجموعه مقالات (1370). مرکز مطالعات و تحقیقات شهرسازی و معماری ایران (طرح‌ریزی کالبدی).
مرکز آمار ایران (1390). نتایج تفصیلی سرشماری عمومی و نفوس و مسکن.
Angel, S., & Bley, A. M. (2016). The Spatial Structure of American Cities: The Great Majority of Workplaces Are No Longer in CBDs. Employment Sub-Centers, or Live-Work Communities, Cities, 51(1), 21–35.
Angel, S., & Sheppard, S. (2005). The Dynamics of Global Urban Expansion. Transport and Urban Development Department.
Bagan, H., & Yamagata, Y. (2012). Landsat Analysis of Urban Growth: How Tokyo Became the World’s Largest Megacity during the Last 40 Years. Remote Sensing of Environment, 127, 210–222.
Bazrafshan, M., Emam Y., & Fallahshamsi, S. R. (2014). Investigating the Time Series Behavior of Spectral Reflection and Vegetation Indications of Sugar Beet Farms Using MODIS Satellite Data. Journal of Crop Production and Processing, 4 (13), 159-170. (In Persian)
Bouzekri1, S. Lasbet, A. A., & Lachehab, A. (2015). A New Spectral Index for Extraction of Built-Up Area Using Lands at-8 Data. Indian Society of Remote Sensing, 43, 867–873.
Brisco, B., Schmitt, A., Murnaghan, K., Kaya, S., & Roth, A. (2013). SAR Polar Metric Change Detection for Flooded Vegetation. International Journal of Digital Earth, 6, 103–114.
Bovolo, F., Bruzzone, L., & Marconcini, M. (2008). A Novel Approach to Unsupervised Change Detection Based on a Semisupervised SVM and a Similarity Measure. IEEE Trans Geoscience and Remote Sensing, 46(7), 2070–2082.
Bullard, R. D. (2003). Atlanta Mega sprawl. Forum for Applied Research and Public Policy, 14, 17–23.
Congalton, R. G. (1991). A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sensing of Environment, 37(1), 35–46.
Chen, M. Su, W., Li, L., Zhang, C., Yue, A., Li, H. (2009). A Comparsion of Pixel-Based and Object-Oriented Knowledgebased Classification Methods Using Spot5 Imagery, WSEAS Transactions On Information Science and Applications, 13, 321–326.
Coisnon, T., Oueslati, W., & Salanié, J. (2014). Urban Sprawl Occurrence under Spatially Varying Agricultural Amenities, Regional Science and Urban Economics, 44(1), 38–49.
Demir, B., Bovolo, F., & Bruzzone, L. (2013). Updating Land-Cover Maps by Classification of Image Time Series: A Novel Change-Detection-Driven Transfer Learning Approach. IEEE Trans Geoscience Remote Sensing, 51, 300–312.
Dronova, I., Gong, P., & Wang, L. (2011). Object-Based Analysis and Change Detection of Major Wetland Cover Types and Their Classification Uncertainty during the Low Water Period at Poyang Lake, China, Remote Sensing. Environment, 115, 3220–3236.
Du, Z., Li, W., Zhou, D., Tian, L., Ling, F., Wang, H., & Sun, B. (2014). Analysis of Landsat-8 OLI Imagery for Land Surface Water Mapping. Remote Sensing Letters, 5(7), 672–681.
Emaoddin S., & Namjo, F. (2014). Evaluation of Geomorphological Parameters in Physical Development of Gorgan City. Territorial Geographical Quarterly, 11(42), 87–98. (In Persian)
Foody, G. M. (2002). Status of Land Cover Classification Accuracy Assessment. Remote Sensing of Environment, 80(1), 185–201.
Gago, E. J. et al. (2013). The City and Urban Heat Islands: A Review of Strategies to Mitigate Adverse Effects. Renewable and Sustainable Energy Reviews, 25(25), 749–758.
Gao, Y., Mas, J. F., & Navarrete, A. (2009). The Improvement of An Object-Oriented Classification Using Multi-Temporal MODIS EVI Satellite Data. International Journal of Digital Earth, 2, 219–236.
Hajarizadeh, Z., & Parvin, N. (2009). Investigation of Temperature Changes and Rainfall in Tehran During the Last Half Century. Geography and Regional Planning, 0, 43-56. (In Persian)
Hosseini H., & Soleymani Moghadam, S. H. (2006). Urban Development and Weakening of Neighborhood Concepts. Housing and Revolution Quarterly, 113, 28–29. (In Persian)
Hosseinzadeh Dalir, K., & Houshiyar, H. (2006). Perspectives Factors and Effective Elements of Physical Development of Iranian Cities. Geographical Journal of Regional Development, 16(6), 213-225. (In Persian)
Hu, Q., Wu, W. B., Xia, T., Yu, Q. Y., Yang, P., Li, Z. G., & Song, Q. (2013). Exploringtheuse of Google Earth imagery and Object–Based Methods in Land Use/Cover Mapping. Remote Sensing, 5(11), 6026–6042.
Jaeger, J. A. G., & Schwick, C. (2014). Improving the Measurement of Urban Sprawl: Weighted Urban Proliferation (WUP) and Its Application to Switzerland. Ecological Indicators, 38, 294–308.
Kaliraj, S., Muthu Meenakshi, S., & Malar, V. K. (2012). Application of Remote Sensing in Detection of Forest Cover Changes Using Geo-Statistical Change Detection Matrices-a Case Study of Devanampatti Reserve Forest, Tamilnadu, India. Nature Environment and Pollution Technology An International Quarterly Scientific Journal, 11, 261–269.
Kaviani A., Farhodi, R. A., & Rajabi, A. (2015). Analysis of the Growth Pattern of Tehran City with the Ecological Approach of the Land Appearance. Geographical Research of Urban Planning, 3(4), 407–429. (In Persian)
Kawamura, M., Jayamanna, S., & Tsujiko, Y. (1996). Relation between Social and Environmental Conditions in Colombo Sri Lanka and the Urban Index Estimated by Satellite Remote Sensing Data. International Archives of Photogrammetry and Remote Sensing, 51, 321-326.
Li, W., Du, Z., Ling, F., Zhou, D., Wang, H., Gui, Y., & Zhang, X. (2013). A Comparison of Land Surface Water Mapping Using the Normalized Difference Water Index from TM, ETM+ and ALI. Remote Sensing, 5(11), 5530–5549.
Marko Gianni, V., Dimitriou, E., & Kalivas, D. P. (2013). Land-Use and Vegetation Change Detection in Plastira Artificial Lake Catchment (Greece) by Using Remote-Sensing and GIS Techniques. International Journal Remote Sensing, 34, 1265–1281.
Masek, J. G., Lindsay, F. E., & Goward, S. N. (2000). Dynamics of Urban Growth in the Washington DC Metropolitan Area, 1973–1996, from Landsat Observations. International Journal of Remote Sensing, 21(18), 3473–3486.
Matsushita, B., Yang, W., Chen, J., Onda, Y., & Qiu, G. (2007). Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-Density Cypress Forest. Sensors, 7, 2636–2651.
Matthias, B., & Martin, H. (2003). Mapping Imperviousness Using NDVI and Linear Spectral Unmixing of ASTER Data in the Cologne-Bonn Region (Germany). In: Proceedings of the SPIE 10th International Symposium on Remote Sensing, 5239, 274–284.
Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66.
Panahi, R., & Zayyari, K. A. (2009). Investigating the Effect of Cultivation and Industrial Activities on the New City of Parsabad. Human Geography Research, 70, 1–14. (In Persian)
Polydoros, A., & Cartalis, C. (2015). Use of Earth Observation based Indices for the Monitoring of Built-Up Area Features and Dynamics in Support of Urban Energy Studies. Energy {and} Buildings, 98, 92–99.
Rahimi, H., Behzadfar, M., & Zayyari, K. A. (2019). Review and Analysis of Urban Structure with Emphasis on Sustainable Development Using AHP Method. Scientific-Research Quarterly New Attitudes in Human Geography, 1, 683–704. (In Persian)
Rahnama M. R., & Abbaszadeh Gh. (2006). Comparative Study of Degree of Distribution / Compression Measurement in Metropolitan Cities of Sydney and Mashhad. Geographical and Regional Development Journal, 12(6), 101-128. (In Persian)
Raja, R. A. A., Anand, V., Kumar, A. S., Maithani, S., & Kumar, V. A. (2013). Wavelet based Post Classification Change Detection Technique for Urban Growth Monitoring. Journal of the Indian Society and Remote Sensing, 41, 35–43.
Ray, S. S., Singh, J. P., Dasa, G., & Panigrahy, S. (2004). Use of High Resolution Remote Sensing Data for Generating Site Specific Soil Management Plan. In Proceeding of the 4th International Society for Photogrammetry and Remote Sensing Congress, 35, 12–23.
Rezae Banafshe, M., Rezae, A., & Faridpoor, M. (2015). Analysis of Agricultural Drought in East Azarbaijan Province with Emphasis on Remote Sensing and Indicator of Vegetation Status. Journal of Water and Soil Knowledge, 25(1), 113–123. (In Persian)
Rezvani, A. A. (1995). Mutual Relations between City and Village with Emphasis on Iran. Tehran: Payame Noor University Press. (In Persian)
Salmon, B. P., Kleynhans, W., Van Den Bergh, F., Olivier, J. C., Grobler, T. L., & Wessels, K. J. (2013). Land Cover Change Detection Using the Internal Covariance Matrix of the Extended Kalman Filter Over Multiple Spectral Bands IEEE. Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6, 1079–1085.
Saraee, M. H., & Jamshidi, Z. (2018). Investigating the Physical Growth Patterns of Urmia City and Presenting an Optimal Pattern in Order to Increase Compression. Geographical Research of Urban Planning, 5(2), 265–287. (In Persian)
Sezgin, M., and B. Sankur. (2004). “Survey over Image Thresholding Techniques and Quantitative Performance Evaluation.” Journal of Electronic Imaging 13 (1): 146–165
Shia, E. (2001). An Introduction to the Basics of Urban Planning. Tehran: Iran University of Science and Technology Publications. (In Persian)
Singh, A. (1989). Review Article Digital Change Detection Techniques Using Remotely – Sensed Data. International Journal of Remote Sensing, 10(6), 989–1003.
Statistical Center of Iran (2011). Detailed Results of the General Census and Population and Housing. (In Persian)
Tehran Proceedings (1991). Iran Urban Planning and Architecture Studies and Research Center. (In Persian)
Volpi, M., Petropoulos, G. P., & Kanevski, M. (2013). Flooding Extent Cartography with Landsat TM Imagery and Regularized Kernel Fisher’s Discriminant Analysis. Computer & Geoscience, 57, 24–31.
Waqar, M. M., Mirza, J. F., Mumtaz, R., & Hussain, E. (2012). Development of New Indices for Extraction of Built-Up Area & Bare Soil from Landsat Data. Open Access Scientific Reports, 1(1), 1-4.
Weng, Q. (2012). Remote Sensing of Impervious Surfaces in the Urban Areas: Requirements Methods and Trends. Remote Sensing of Environment, 117, 34–49.
Xu, H. (2008). A New Index for Delineating Built‐Up Land Features in Satellite Imagery. International Journal of Remote Sensing, 29(14), 4269–4276.
Xu, H. (2007). Extraction of Urban Built-Up Land Feature from Landsat Imagery Using a Thematic- Oriented Index Combination Technique. Photogrammetric Engineering & Remote Sensing, 73(12), 1381–1391.
Xu, H. (2010).Analysis of Impervious Surface and its Impact on Urban Heat Environment using the Normalized Difference Impervious Surface Index (NDISI). Photogrammetric Engineering & Remote Sensing, 76(5), 557–565
Zarin, J., & Alavipanah, S. K. (2016). Investigating Changes in Thermal Pattern Over a Period of 30 Years Using Thermal Bands Landsat Satellite Images (Case Study: Southern Lands of Abadan Island), The First International Conference on Natural Disasters and Environmental Crisis in Iran, Strategies and Challenges. Ardabil: Mohaghegh Ardabili University. (In Persian)
Zayyari, K. A. (2003). Socio-Cultural Developments Resulting from the Industrial Revolution in the Spatial Development of Tehran. Journal of Geography and Development, 1(1), 151-164. (In Persian)
Zha, Y., Gao, J., & Ni, S. (2003). Use of Normalized Difference Built-Up Index in Automatically Mapping Urban Areas from TM Imagery. International Journal of Remote Sensing, 24(3), 583–594.
Zhang, Y. Odeh, I. O. A. and Han, C. (2009). Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. International Journal of Applied Earth Observation and Geoinformation, Vol. 11, No. 4: 256–264.
Zhao, M. S., Rossiter, D. G., Li, D. C., Zhao, Y. G., & Liu, F. (2014). Mapping Soil Organic Matter in Low-Relief Areas Based on Land Surface Diurnal Temperature Difference and a Vegetation Index. Ecological Indicators, 39, 120–133.