شناسایی اراضی شهری با استفاده از تصاویر ماهواره‌ای سنتینل 1 و 2 بر پایۀ سامانۀ گوگل‌ارث انجین (GEE)

نوع مقاله : پژوهشی - کاربردی

نویسنده

استادیار گروه جغرافیا، دانشگاه ارومیه، ارومیه، ایران

چکیده

استفاده از روش‌های مناسب و تصاویر ماهواره‌ای به‌روز در مطالعات مختلف، به‌ویژه مطالعات شهری می‌تواند در تولید نقشه‌های شهری تأثیر بسیاری داشته باشد. یکی از این داده‌های مهم، نقشة مربوط به حدود اراضی شهری است که با استفاده از روش‌های مختلف قابل‌استخراج است. هدف پژوهش حاضر استخراج اراضی شهری تعدادی از شهرهای ایران به‌کمک تصاویر ماهواره‌ای سنتینل 1 (SAR) و سنتینل 2 بر پایة سامانة گوگل‌ارث انجین (GEE) است؛ بدین‌منظور تصاویر راداری سنتینل 1 و اپتیکی سنتینل 2 به‌صورت سری زمانی از اول ژانویة 2017 تا اول ژانویة 2020 برای 20 شهر ایران انتخاب و وارد محیط گوگل‌ارث انجین شدند. سپس در محیط این سامانه، ابتدا میانگین و انحراف از معیار تصاویر سری زمانی راداری تهیه و با اعمال آستانه، اراضی بالقوة شهری استخراج شد. پوشش گیاهی حداکثر، پهنه‌های آبی و مناطق پرشیب و کوهستانی نیز به‌کمک تصاویر سنتینل 2 و مدل‌های رقومی ارتفاعی استخراج شدند. با اعمال آستانه نیز تصاویر ماسک ایجاد شدند. درنهایت با اعمال این تصاویر روی نقشة اراضی بالقوة شهری، نقشة اراضی هدف ایجاد و با اعمال فیلتر 3×3 برای حذف پیکسل‌های منفرد و اشتباه، نقشة نهایی اراضی شهری استخراج شد. به‌منظور بررسی صحت نقشه‌ها از ضریب کاپا، صحت کلی، صحت کاربر و صحت تولیدکننده استفاده شد. نتایج نشان می‌دهد، میانگین ضریب کاپا برای 20 شهر، 16/86 درصد است که بیشترین آن به شهر رشت و کمترین آن به کرمان مربوط است. همچنین شهرهای واقع در مناطق خشک و نیمه‌خشک، صحت کمتری دارند. همچنین مشخص شد سامانة GEE قادر است حجم زیادی از داده‌ها را در زمان بسیار اندک با دقت بالا پردازش کند.

کلیدواژه‌ها


عنوان مقاله [English]

Urban lands Extraction from Sentinel 1 and 2 satellite imagery based on Google Earth Engine (GEE)

نویسنده [English]

  • Vahid Mohammadnejad
چکیده [English]

The use of appropriate methods and up-to-date satellite images in various studies, especially urban studies, can play a major role in the production of urban maps. One of these important data is the map of urban lands that can be extracted using various methods. The aim of this paper is to extract urban lands of a number of Iranian cities using Sentinel 1 SAR satellite images and Sentinel 2 based on Google Earth Engine GEE. For this purpose, Sentinel 1 SAR and Optical Sentinel 2 images were selected as time series from 2017.01.01 to 2020.01.01 for 20 cities in Iran. time series Images entered to the Google Earth engine environment, and then the mean and standard deviation of radar images were prepared and by applying the threshold, potential urban lands were extracted. NDVImax, NDWImean and slope and mountainous areas were also extracted using Sentinel 2 images and DEM, and mask images were created by applying thresholds. Finally, by applying these images to the map of potential urban lands, the target urban land map was created and by applying a 3 * 3 filter to remove individual and false pixels, the final map of urban lands was extracted. The results show that the average Kappa coefficient for 20 cities is 86.16%. Also, cities in arid and semi-arid regions are less accurate. The results of this study show that the GEE system is able to process large amounts of data in a very short time with high accuracy.

کلیدواژه‌ها [English]

  • Urban land map
  • Sentinel 2
  • SAR image
  • Google Earth Engine
  • Iran
عطارچی، سارا (1398). «کارایی شاخص‌های راداری در استخراج سطوح نفوذناپذیر شهری با استفاده از تصویر رادار تمام پلاریمتریک»، پژوهش‌های جغرافیای برنامه‌ریزی شهری، شمارة 4، صص 837-854.
Arnold Jr, C. L., & Gibbons, C. J. (1996). Impervious Surface Coverage: The Emergence of a Key Environmental Indicator. Journal of the American Planning Association62(2), 243-258.
Attarchi, S. (2019). Efficiency Evaluation of SAR-Derived Indices in Urban Impervious Surfaces Extraction Using Full Polarimetric Image. Geographical Urban Planning Research, 7(4), 837-854. (In Persian)
Ban, Y., Jacob, A., & Gamba, P. (2015). Spaceborne SAR Data for Global Urban Mapping at 30 M Resolution Using a Robust Urban Extractor. ISPRS Journal of Photogrammetry and Remote Sensing103, 28-37.
Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., & Zhang, W. (2015). Global Land Cover Mapping at 30 M Resolution: A POK-Based Operational Approach. ISPRS Journal of Photogrammetry and Remote Sensing103, 7-27.
Civco, D. L., Hurd, J. D., Wilson, E. H., Arnold, C. L., & Prisloe Jr, M. P. (2002). Quantifying and Describing Urbanizing Landscapes in the Northeast United States. Photogrammetric Engineering and Remote Sensing68(10), 1083-1090.
Corbane, C., Faure, J. F., Baghdadi, N., Villeneuve, N., & Petit, M. (2008). Rapid Urban Mapping Using SAR/Optical Imagery Synergy. Sensors8(11), 7125-7143.
Deng, C., & Wu, C. (2012). BCI: A Biophysical Composition Index for Remote Sensing f Urban Environments. Remote Sensing Of Environment127, 247-259.
Goldblatt, R., You, W., Hanson, G., & Khandelwal, A. K. (2016). Detecting the Boundaries of Urban Areas in India: A Dataset for Pixel-Based Image Classification in Google Earth Engine. Remote Sensing8(8), 634.
Gomez-Chova, L., Fernández-Prieto, D., Calpe, J., Soria, E., Vila, J., & Camps-Valls, G. (2006). Urban Monitoring Using Multi-Temporal SAR and Multi-Spectral Data. Pattern Recognition Letters27(4), 234-243.
Haas, J., & Ban, Y. (2017). Sentinel-1A SAR and Sentinel-2A MSI Data Fusion for Urban Ecosystem Service Mapping. Remote Sensing Applications: Society and Environment8, 41–53.
Hagolle, O., Huc, M., Pascual, D. V., & Dedieu, G. (2010). A Multi-Temporal Method for Cloud Detection, Applied To FORMOSAT-2, Venµs, LANDSAT and SENTINEL-2 Images. Remote Sensing Of Environment114(8), 1747–1755.
Hansen, M. C., & Loveland, T. R. (2012). A Review of Large Area Monitoring of Land Cover Change Using Landsat Data. Remote Sensing of Environment122, 66–74.
Hodgson, M. E., Jensen, J. R., Tullis, J. A., Riordan, K. D., & Archer, C. M. (2003). Synergistic Use of Lidar And Color Aerial Photography for Mapping Urban Parcel Imperviousness. Photogrammetric Engineering & Remote Sensing69(9), 973–980.
Huang, H., Chen, Y., Clinton, N., Wang, J., Wang, X., Liu, C., & Zhu, Z. (2017). Mapping Major Land Cover Dynamics in Beijing Using All Landsat Images in Google Earth Engine. Remote Sensing of Environment202, 166–176.
Im, J., Lu, Z., Rhee, J., & Quackenbush, L. J. (2012). Impervious Surface Quantification Using a Synthesis of Artificial Immune Networks and Decision/Regression Trees from Multi-Sensor Data. Remote Sensing of Environment117, 102–113.
Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geoscience and Remote Sensing Letters14(5), 778–782.
Li, G., Lu, D., Moran, E., & Hetrick, S. (2013). Mapping Impervious Surface Area in the Brazilian Amazon Using Landsat Imagery. Giscience & Remote Sensing50(2), 172–183.
Liu, C., Shao, Z., Chen, M., & Luo, H. (2013). MNDISI: A Multi-Source Composition Index for Impervious Surface Area Estimation at the Individual City Scale. Remote Sensing Letters4(8), 803–812.
Lu, D., & Weng, Q. (2004). Spectral Mixture Analysis of the Urban Landscape in Indianapolis with Landsat ETM+ Imagery. Photogrammetric Engineering & Remote Sensing70(9), 1053–1062.
Matgen, P., Schumann, G., Henry, J. B., Hoffmann, L., & Pfister, L. (2007). Integration of SAR-Derived River Inundation Areas, High-Precision Topographic Data and a River Flow Model toward Near Real-Time Flood Management. International Journal of Applied Earth Observation and Geoinformation9(3), 247–263.
Patel, N. N., Angiuli, E., Gamba, P., Gaughan, A., Lisini, G., Stevens, F. R., & Trianni, G. (2015). Multitemporal Settlement and Population Mapping from Landsat Using Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation35, 199–208.
Pavanelli, J. A. P., Santos, J. R. D., Galvão, L. S., Xaud, M., & Xaud, H. A. M. (2018). PALSAR-2/ALOS-2 and OLI/LANDSAT-8 Data Integration for Land Use and Land Cover Mapping in Northern Brazilian Amazon. Boletim De Ciências Geodésicas24(2), 250–269.
Pesaresi, M., Huadong, G., Blaes, X., Ehrlich, D., Ferri, S., Gueguen, L., & Marin-Herrera, M. A. (2013). A Global Human Settlement Layer from Optical HR/VHR RS Data: Concept and First Results. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing6(5), 2102–2131.
Potin, P., Rosich, B., Grimont, P., Miranda, N., Shurmer, I., O'Connell, A., & Krassenburg, M. (2016). Sentinel-1 Mission Status. In (Eds.), Sentinel-1 Mission Status. Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar (pp. 1–6). Hamburg, Germany: VDE VERLAG GMBH.
Rosin, P. L. (2001). Unimodal Thresholding. Pattern Recognition34(11), 2083–2096.
Schneider, A., Friedl, M. A., & Potere, D. (2010). Mapping Global Urban Areas Using MODIS 500-M Data: New Methods and Datasets Based on ‘Urban Ecoregions’. Remote Sensing of Environment114(8), 1733–1746.
Seto, K. C., Fragkias, M., Güneralp, B., & Reilly, M. K. (2011). A Meta-Analysis of Global Urban Land Expansion. Plos One6(8), E23777.
Shao, Y., Li, G. L., Guenther, E., & Campbell, J. B. (2015). Evaluation of Topographic Correction on Subpixel Impervious Cover Mapping with CBERS-2B Data. IEEE Geoscience and Remote Sensing Letters12(8), 1675–1679.
Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A., & Skakun, S. (2017). Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping. Frontiers in Earth Science5, 17.
Shen, X., Wang, D., Mao, K., Anagnostou, E., & Hong, Y. (2019). Inundation Extent Mapping by Synthetic Aperture Radar: A Review. Remote Sensing11(7), 879.
Sun, Z., Guo, H., Li, X., Lu, L., & Du, X. (2011). Estimating Urban Impervious Surfaces from Landsat-5 TM Imagery Using Multilayer Perceptron Neural Network and Support Vector Machine. Journal of Applied Remote Sensing5(1), 053501.
Sun, Z., Xu, R., Du, W., Wang, L., & Lu, D. (2019). High-Resolution Urban Land Mapping in China From Sentinel 1A/2 Imagery Based on Google Earth Engine. Remote Sensing11(7), 752.
Sun, Z., Zhao, X., Wu, M., & Wang, C. (2019). Extracting Urban Impervious Surface From Worldview-2 and Airborne Lidar Data Using 3D Convolutional Neural Networks. Journal of the Indian Society of Remote Sensing47(3), 401–412.
Wang, Z., Gang, C., Li, X., Chen, Y., & Li, J. (2015). Application of a Normalized Difference Impervious Index (NDII) to Extract Urban Impervious Surface Features Based on Landsat TM Images. International Journal of Remote Sensing36(4), 1055–1069.
Weng, Q. (2012). Remote Sensing of Impervious Surfaces in the Urban Areas: Requirements, Methods, and Trends. Remote Sensing of Environment117, 34–49.
Weng, Q., & Hu, X. (2008). Medium Spatial Resolution Satellite Imagery for Estimating and Mapping Urban Impervious Surfaces Using LSMA and ANN. IEEE Transactions on Geoscience and Remote Sensing46(8), 2397–2406.
Weng, Q., Hu, X., & Liu, H. (2009). Estimating Impervious Surfaces Using Linear Spectral Mixture Analysis with Multitemporal ASTER Images. International Journal of Remote Sensing30(18), 4807–4830.
Wu, C., & Murray, A. T. (2003). Estimating Impervious Surface Distribution by Spectral Mixture Analysis. Remote Sensing of Environment84(4), 493–505.
Wu, M., Zhao, X., Sun, Z., & Guo, H. (2019). A Hierarchical Multiscale Super-Pixel-Based Classification Method for Extracting Urban Impervious Surface Using Deep Residual Network from Worldview-2 and Lidar Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing12(1), 210–222.
Xian, G., & Homer, C. (2010). Updating the 2001 National Land Cover Database Impervious Surface Products to 2006 Using Landsat Imagery Change Detection Methods. Remote Sensing of Environment114(8), 1676–1686.
Xu, H. (2010). Analysis of Impervious Surface and Its Impact on Urban Heat Environment Using the Normalized Difference Impervious Surface Index (NDISI). Photogrammetric Engineering & Remote Sensing76(5), 557–565.
Yang, L., Huang, C., Homer, C. G., Wylie, B. K., & Coan, M. J. (2003). An Approach for Mapping Large-Area Impervious Surfaces: Synergistic Use of Landsat-7 ETM+ and High Spatial Resolution Imagery. Canadian Journal of Remote Sensing29(2), 230–240.
Zhang, C., Sargent, I., Pan, X., Li, H., Gardiner, A., Hare, J., & Atkinson, P. M. (2018). An Object-Based Convolutional Neural Network (OCNN) for Urban Land Use Classification. Remote Sensing of Environment216, 57–70.
Zhang, H., Zhang, Y., & Lin, H. (2012). A Comparison Study of Impervious Surfaces Estimation Using Optical and SAR Remote Sensing Images. International Journal of Applied Earth Observation and Geoinformation18, 148–156.
Zhang, Q., & Seto, K. C. (2011). Mapping Urbanization Dynamics at Regional and Global Scales Using Multi-Temporal DMSP/OLS Nighttime Light Data. Remote Sensing of Environment115(9), 2320–2329.
Zhang, Y., Zhang, H., & Lin, H. (2014). Improving the Impervious Surface Estimation with Combined Use of Optical and SAR Remote Sensing Images. Remote Sensing Of Environment141, 155–167.