ارزیابی کارایی اطلاعات جغرافیایی داوطلبانه در طبقه‌بندی تصاویر سنتینل 2 با هدف شناسایی تغییرات کاربری مناطق شهری (مطالعة موردی: شهر قزوین)

نوع مقاله : پژوهشی - کاربردی

نویسندگان

1 دانشجوی کارشناسی ارشد سنجش‌ازدور و GIS، دانشگاه تهران، تهران، ایران

2 استادیار گروه سنجش‌ازدور و GIS، دانشگاه تهران، تهران، ایران

3 دانشیار گروه سنجش‌ازدور و GIS، دانشگاه تهران، تهران، ایران

چکیده

در چند دهة اخیر، مناطق شهری به‌دلیل رشد سریع جمعیت و افزایش شهرنشینی دستخوش تغییرات زیادی شده است. استفاده از تصاویر ماهواره‌ای با قدرت تفکیک مکانی بالا یکی از روش‌های کارآمد در مطالعه و شناسایی این تغییرات است. دسترسی به این تصاویر به‌دلیل هزینة فراوان بسیار محدود است؛ از این‌رو تصاویر ماهواره‌ای با قدرت تفکیک متوسط نظیر سنتینل به‌دلیل دسترس‌پذیری بالا در کاربردهای شهری بسیار استفاده شده است. شناسایی دقیق تغییرات شهر با استفاده از طبقه‌بندی تصاویر ماهواره‌ای نیازمند دسترسی به داده‌های زمینی صحیح برای تفکیک کلاس‌های مختلف پوشش زمین است. عملیات برداشت اطلاعات زمینی، پرهزینه و زمان‌بر است و برای تصاویر مربوط به زمان‌های گذشته امکان‌پذیر نیست. اطلاعات جغرافیایی داوطلبانه که داده‌های مربوط به یک دورة زمانی را جمع‌آوری می‌کند، می‌تواند یکی از منابع دادة حقایق زمینی باشد. با استفاده از نمونه‌های تعلیمی حاصل از اطلاعات جغرافیایی داوطلبانه، فرایند پردازش تصاویر ماهواره‌ای با سرعت بیشتری انجام می‌شود. در این پژوهش، کارایی اطلاعات جغرافیایی داوطلبانه به‌ عنوان نمونه‌های تعلیمی در طبقه‌بندی تصاویر سنتینل 2 برای شناسایی تغییرات کاربری شهر قزوین در سال‌های 1394 و 1397 بررسی شده است. بدین‌منظور صحت طبقه‌بندی تصاویر سنتینل 2 با نمونه‌های تعلیمی حاصل از اطلاعات جغرافیایی داوطلبانه با صحت طبقه‌بندی تصاویر مذکور با استفاده از نمونه‌های تعلیمی به‌دست‌آمده از تصاویر گوگل‌ارث و به‌کمک آزمون آماری t مقایسه شده است. نتایج آزمون t با سطح اطمینان 95 درصد، برای سال‌های 1394 و 1397 نشان می‌دهد اختلاف معناداری میان نمونه‌های تعلیمی گوگل‌ارث و اطلاعات جغرافیایی داوطلبانه در طبقه‌بندی تصاویر سنتینل 2 وجود ندارد؛ بنابراین اطلاعات جغرافیایی داوطلبانه کارایی مناسبی به‌ عنوان نمونه‌های تعلیمی در طبقه‌بندی تصاویر ماهواره‌ای در مناطق شهری دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating the efficiency of voluntary geographic information in Sentinel-2 images’ classification for urban land cover mapping

نویسندگان [English]

  • omid asgari 1
  • Sara Attarchi 2
  • Najmeh Neysani Samani 3
1 Remote sensing and GIS, Faculty of Geography, university of tehran, tehran, iran
2 Assistant professor, Remote sensing and GIS Department, Faculty of Geography, University of Tehran
3 Associate professor remote sensing and GIS, Faculty of Geography, University of Tehran
چکیده [English]

In recent decades, urban areas have undergone many changes due to increasing urbanization. Today, with the help of multi-temporal remote sensing images, it is possible to monitor land use changes over decades. High resolution satellite images provide great opportunities to produce urban LU/LC maps. However, such images are expensive and their access are limited. Hence, medium-resolution satellite images such as Sentinel-2 has been widely used in urban applications. Supervised image classifications techniques need accurate training data to detect urban features. Training data collection is difficult and time-consuming and is not easily possible for historical images. Alternatively, voluntary geographic information (VGI) has become widely available from online sources such as OpenStreetMap (OSM), and it may provide a useful source of training data in image classification. This study aims evaluate the efficiency of VGI in classification sentinel-2 time series images (for the years 1394 and 1397) to identification LU changes have been done. For this purpose, the accuracy of classification of Sentinel 2 images with training samples obtained from voluntary geographical information with the accuracy of classification of the mentioned images with training samples obtained from Google Earth images has been compared by T-test at 95% significance level. The results of T-test for 1394 and 1397 show that there is no significant difference between the data set of Google Earth images and VGI. Therefore, the results confirmed that the use of VGI training samples provides good results in monitoring the land use changes.

کلیدواژه‌ها [English]

  • Volunteered geographic information (VGI)
  • Sentinel-2 satellite images
  • Urban land cover classification
  • Qazvin City
لیسند، توماس ‌و کیفر، رالف (1387). سنجش از دور و تفسیر تصاویر ماهواره ای، ترجمة جعفر اولادی قادیکلایی، بابلسر: انتشارات دانشگاه مازندران.
جلوخانی ‌نیارکی، محمدرضا (1395). «طراحی و پیاده‌سازی سامانة پایش محیط‌زیست شهروندمحور مبتنی بر وب GIS»، اولین کنفرانس ملی فناوری اطلاعات و مدیریت شهری، تهران.
حسینعلی، فرهاد، آل‌شیخ، علی‌اصغر و نوریان، فرشاد (1391). «توسعة مدلی عامل‌مبنا برای شبیه‌سازی گسترش کاربری اراضی شهری (منطقة مورد مطالعه: شهر قزوین)»، مطالعات و پژوهش‌های شهری و منطقه‌ای، شمارة 14، 21-22.
محمداسماعیل، زهرا (1389). «پایش تغییرات کاربری اراضی کرج با استفاده از تکنیک سنجش‌ازدور»، مجلة پژوهش‌های خاک، شمارة 1، 82-88.
نجفی، احمد، عزیزی ‌قلاتی، سارا و مختاری، محمدحسین (1396). «کاربرد ماشین بردار پشتیبان در طبقه‌بندی کاربری اراضی حوزة چشمة کیله-چالکرود»، پژوهشنامة مدیریت حوزة آبخیز، شمارة 15، 92-101.
Chilton, S. (2009). Crowdsourcing Is Radically Changing the Geodata Landscape: Case Study of Openstreetmap. Paper Presented at the Proceedings of the UK 24th International Cartography Conference, Hendon, London NW4 4BT, UK.
Estima, J., & Painho, M. (2013). Exploratory Analysis of Openstreetmap for Land Use Classification. Paper Presented at the Proceedings of the Second ACM SIGSPATIAL international Workshop on crowdsourced and Volunteered Geographic Information, November 2013, Pages 39–46.
Farhad, H. A., AlShiykh, A. S., & Nourian, F. (2012). Development of Factor-Based Model to Simulate Urban Land Use Expansion (Study Area: Qazvin City). Urban and Regional Studies and Research, 4(14), 22-21. (In Persian)
Flanagin, A. J., & Metzger, M. J. (2008). The Credibility of Volunteered Geographic Information. GeoJournal, 72(3-4), 137-148.
Fonte, C. C., Bastin, L., See, L., Foody, G., & Lupia, F. (2015). Usability of VGI for Validation of Land Cover Maps. International Journal of Geographical Information Science, 29(7), 1269-1291.
Goodchild, M. F. (2007). Citizens as Sensors: The World of Volunteered Geography. GeoJournal, 69(4), 211-221.
Hossein Ali, F., Ali Asghar, A.-S., & Farshad, N. (2012). Development of Factor-Based Model to Simulate Urban Land Use Expansion (Study Area: Qazvin City). Urban and Regional Studies and Research, 4(14), 22-21. (In Persian)
Investopedia. (2020). What is a T Test? Retrieved from https://www.investopedia.com/terms/t/t-test.asp.
Jelokhani-Niaraki, M. (2016). Design and Implementation Citizen-Centered Environmental Monitoring System Based on WEB Gis. Paper Presented at the First National Conference on Information Technology and Urban Management, Tehran. (In Persian)
Johnson, B. A., & Iizuka, K. (2016). Integrating Open StreetMap Crowdsourced Data and Landsat Time-Series Imagery for Rapid Land Use/Land Cover (LULC) Mapping: Case Study of the Laguna De Bay Area of The Philippines. Applied Geography, 67, 140-149.
Johnson, B. A., Iizuka, K., Bragais, M. A., Endo, I., & Magcale-Macandog, D. B. (2017). Employing Crowdsourced Geographic Data and Multi-Temporal/Multi-Sensor Satellite Imagery to Monitor Land Cover Change: A Case Study in an Urbanizing Region of the Philippines. Computers, Environment and Urban Systems, 64, 184-193.
Koukoletsos, T., Haklay, M., & Ellul, C. (2012). Assessing Data Completeness of VGI Through an Automated Matching Procedure for Linear Data. Transactions in GIS, 16(4), 477-498.
Li, W., Dong, R., Fu, H., Wang, J., Yu, L., & Gong, P. (2020). Integrating Google Earth imagery with Landsat Data to Improve 30-M Resolution Land Cover Mapping. Remote Sensing of Environment, 237, 111563.
Lin, W. (2013). When Web 2.0 Meets Public Participation GIS (PPGIS): VGI and Spaces of Participatory mapping in China. In Book Section (Ed.), Crowdsourcing Geographic Knowledge (pp. 83-103), Springer.
Lillesand, T., & Kiefer, R. (2008). Remote Sensing and Image Interpretation (J. Oladi Qadiklaei, Tran) Babolsar: Mazandaran University Press. (In Persian)
Malarvizhi, K., Kumar, S. V., & Porchelvan, P. (2016). Use of High Resolution Google Earth Satellite Imagery in Landuse Map Preparation for Urban Related Applications. Procedia Technology, 24, 1835-1842.
Misra, M., Kumar, D., & Shekhar, S. (2020). Assessing Machine Learning Based Supervised Classifiers for Built-Up Impervious Surface Area Extraction From Sentinel-2 Images. Urban Forestry & Urban Greening, 53, 126714.
Mohammad Esmaeil, Z. (2010). Monitoring Land Use Land Cover Changes in Karaj by Applying Remote Sensing. Soil and Water Reserch Institute, 24, 81-88. (In Persian)
Najafi, A., Qalati, S., & Mokhtari, M. H. (2017). Application of Support Vector Machine in Land Use Classification of Kileh-Chalkroud Basin. Journal of Watershed Management, 8(15), 92-101. (In Persian)
Olteanu-Raimond, A.-M., See, L., Schultz, M., Foody, G., Riffler, M., Gasber, T., …, & Liu, L. (2020). Use of automated Change Detection and Vgi Sources for Identifying and Validating Urban Land Use Change. Remote Sensing, 12(7), 1186.
Reba, M., & Seto, K. C. (2020). A Systematic Review and Assessment of Algorithms to Detect, Characterize, and Monitor Urban Land Change. Remote Sensing of Environment, 242, 111739.
Schelhorn, S.-J., Herfort, B., Leiner, R., Zipf, A., & De Albuquerque, J. P. (2014). Identifying Elements at Risk from Openstreetmap: The Case of Flooding. Paper Presented at the ISCRAM, GIScience Chair, Heidelberg University, Germany.
Statisticshowto. (2020). Student’s T-Test, Retrieved from https://www.statisticshowto.com/probability-and-statistics/t-test/.
Terroso-Saenz, F., & Munoz, A. (2020). Land use discovery based on Volunteer Geographic Information classification. Expert Systems with Applications, 140, 112892.
Thomas, M. L., & Ralph, W. K. (2008). Remote Sensing and Image Interpretation (J. Oladi Qadiklaei, Tran). Babolsar: Mazandaran University Press. (In Persian)
Toronto, U. o. (2020). The T Test, Retrieved from https://www.utsc.utoronto.ca/.
tutorialspoint. (2020). Learn Django, Retrieved from https://www.tutorialspoint.com/django/django_overview.htm.
Woodcock, C. E., Loveland, T. R., Herold, M., & Bauer, M. E. (2020). Transitioning from Change Detection to Monitoring with Remote Sensing: A Paradigm Shift. Remote Sensing of Environment, 238, 111558.
Xin, H., Ying, W., Jiayi, L., Xiaoyu, C., Yinxia, C., Junfeng, X., & Jianya, G. (2020). High-Resolution Urban Land-Cover Mapping and Landscape Analysis of the 42 Major Cities in China Using ZY-3 Satellite Images. Science Bulletin, Volume 65, Issue 12, 30 June 2020, Pages 1039-1048.
Zhou, L., Dang, X., Sun, Q., & Wang, S. (2020). Multi-Scenario Simulation of Urban Land Change in Shanghai by Random Forest and CA-Markov Model. Sustainable Cities and Society, 55, 102045.
Zurqani, H. A., Post, C. J., Mikhailova, E. A., Schlautman, M. A., & Sharp, J. L. (2018). Geospatial analysis of Land Use Change in the Savannah River Basin Using Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 69, 175-185.