خیراللهی،
مصطفی، نادی، سعید و
نجمه نیسانی سامانی (1395). «تلفیق معیارهای کیفی و کمی با استفاده از مدلهای مکان مبنا بهمنظور مسیریابی بهینۀ خودروهای اورژانس در محیطهای شهری»، مجلۀ سپهر،
شمارۀ 100، صص 45-59.
ناصری، محمدرضا و وحید برادران (1388). «بررسی عوامل موثر بر زمان سفر در سیستم حمل و نقل عمومی و پیش بینی زمان سفر مورد کاوی: سیستم اتوبوسرانی شهر تهران». پژوهشنامه حمل و نقل، شمارۀ 3، صص 219-232.
باقری، میلاد، جلوخانی نیارکی، محمدرضا و کیوان باقری (1396). «بررسی پتانسیل اراضی استان کرمانشاه جهت کشت گندم دیم با استفاده از شبکۀ عصبی مصنوعی»، سنجش از دور و سامانۀ اطلاعات جغرافیایی در منابع طبیعی، شمارۀ 4، صص 36-48.
Naseri, M. R., & Baradaran, V. (2009). Study of Factors Affecting Travel Time in Public Transport System and Predicting Travel Time Case Study: Tehran Bus System. Journal of Transportation, No. 3, pp. 219-232. (In Persian)
Bagheri, M., Jaloukhani Niaraki, M. R., & Bagheri, K. (2017). Assessing the Potential of Lands in Kermanshah Province for Rainfed Wheat Cultivation Using Artificial Neural Network. Remote Sensing and Geographic Information System in Natural Resources, (4), 36- 48. (In Persian)
Brakewood, C., Macfarlane, G. S., & Watkins, K. (2015). The Impact of Real-Time Information on Bus Ridership in New York City. Transportation Research Part C: Emerging Technologies, 53, 59-75.
Cheng, J., Li, G., & Chen, X. (2019). Developing a Travel Time Estimation Method of Freeway Based on Floating Car Using Random Forests. Journal of Advanced Transportation, 63, 51-65.
Cheng, Z., Chow, M. Y., Jung, D., & Jeon, J. (2017). A Big Data Based Deep Learning Approach for Vehicle Speed Prediction. In 26th International Symposium on Industrial Electronics (ISIE) (pp. 389-394). IEEE.
Dessouky, M., Hall, R., Zhang, L., & Singh, A. (2003). Real-Time Control of Buses for Schedule Coordination at a Terminal. Transportation Research Part A: Policy and Practice, 37(2), 145-164.
Goldberg, R., & Listowsky, P. (1994). Critical Factors for Emergency Vehicle Routing Expert Systems. Expert Systems with Applications, 7(4), 589-602.
He, J., Shen, W., Divakaruni, P., Wynter, L., & Lawrence, R. (2013, June). Improving traffic prediction with tweet semantics. In Twenty-Third International Joint Conference on Artificial Intelligence.
Hellinga, B., Izadpanah, P., Takada, H., & Fu, L. (2008). Decomposing Travel Times Measured by Probe-Based Traffic Monitoring Systems to Individual Road Segments. Transportation Research Part C: Emerging Technologies, 16(6), 768-782.
Hofleitner, A., Herring, R., & Bayen, A. (2012). Arterial Travel Time Forecast with Streaming Data: A Hybrid Approach of Flow Modeling and Machine Learning. Transportation Research Part B: Methodological, 46(9), 1097-1122.
Khairullahi, M., Nadi, S., & Nissani Samani, N. (2016). Integration of Qualitative and Quantitative Criteria Using Base Location Models in Order to Optimally Route Emergency Vehicles in Urban Environments. Sepehr Magazine, 25(100), 45-59. (In Persian)
Kiartzis, S. K., Bakirtzis, A. G., & Petridis, V. (1992). Short-Term Load Forecasting Using Neural Networks. Electric Power Systems Research, 33, 1-6.
Kumar, B. A., Vanajakshi, L., & Subramanian, S. C. (2017). Bus Travel Time Prediction Using a Time-Space Discretization Approach. Transportation Research Part C: Emerging Technologies, 79, 308-332.
Kumar, B. A., Vanajakshi, L., & Subramanian, S. C. (2018). A Hybrid Model Based Method for Bus Travel Time Estimation. Journal of Intelligent Transportation Systems, 22(5), 390-406.
Li, Y., & McDonald, M. (2002). Link Travel Time Estimation Using Single GPS Equipped Probe Vehicle. In Proceedings the IEEE 5th International Conference on Intelligent Transportation Systems (pp. 932-937). IEEE
Lin, H. E., Zito, R., & Taylor, M. (2005, September). A review of travel-time prediction in transport and logistics. In Proceedings of the Eastern Asia Society for transportation studies (Vol. 5, pp. 1433-1448).
Liu, H., Xu, H., Yan, Y., Cai, Z., Sun, T., & Li, W. (2020). Bus Arrival Time Prediction Based on LSTM and Spatial-Temporal Feature Vector. IEEE Access, 8, 11917-11929.
Lu, L., Wang, J., He, Z., & Chan, C. Y. (2017). Real-time estimation of freeway travel time with recurrent congestion based on sparse detector data. IET Intelligent Transport Systems, 12(1), 2-11.
Ma, Z., Koutsopoulos, H. N., Ferreira, L., & Mesbah, M. (2017). Estimation of Trip Travel Time Distribution Using a Generalized Markov Chain Approach. Transportation Research Part C: Emerging Technologies, 74, 1-21.
Pahlavani, P., Delavar, M. R., & Frank, A. U. (2012). Using a Modified Invasive Weed Optimization Algorithm for a Personalized Urban Multi-Criteria Path Optimization Problem. International Journal of Applied Earth Observation and Geoinformation, 18, 313-328.
Rahman, M. M., Wirasinghe, S. C., & Kattan, L. (2018). Analysis of Bus Travel Time Distributions for Varying Horizons and Real-Time Applications. Transportation Research Part C: Emerging Technologies, 86, 453-466.
Rahmani, M., Jenelius, E., & Koutsopoulos, H. N. (2015). Non-Parametric Estimation of Route Travel Time Distributions from Low-Frequency Floating Car Data. Transportation Research Part C: Emerging Technologies, 58, 343-362.
Watkins, K. E., Ferris, B., Borning, A., Rutherford, G. S., & Layton, D. (2011). Where Is My Bus? Impact of Mobile Real-Time Information on the Perceived and Actual Wait Time of Transit Riders. Transportation Research Part A: Policy and Practice, 45(8), 839-848.
Woodard, D., Nogin, G., Koch, P., Racz, D., Goldszmidt, M., & Horvitz, E. (2017). Predicting Travel Time Reliability Using Mobile Phone GPS Data. Transportation Research Part C: Emerging Technologies, 75, 30-44.
Yang, M., Chen, C., Wang, L., Yan, X., & Zhou, L. (2016). Bus Arrival Time Prediction Using Support Vector Machine with Genetic Algorithm. Neural Network World, 26(3), 205-217.
Zakaria, M., Al-Shebany, M., & Sarhan, S. (2014). Artificial neural network: a brief overview. International Journal of Engineering Research and Applications, 4(2), 7-12.
Zheng, F., & Van Zuylen, H. (2013). Urban Link Travel Time Estimation Based on Sparse Probe Vehicle Data. Transportation Research Part C: Emerging Technologies, 31, 145-157.
Zhou, M., Wang, D., Li, Q., Yue, Y., Tu, W., & Cao, R. (2017). Impacts of Weather on Public Transport Ridership: Results from Mining Data from Different Sources. Transportation research part C: Emerging Technologies, 75, 17-29.