آشکارسازی مناطق ساخته‌شدۀ شهری با استفاده از تصاویر مدارهای متفاوت سنتینل 1، مورد مطالعه: شهر اصفهان

نوع مقاله : پژوهشی - کاربردی

نویسندگان

1 دانشجوی کارشناسی ارشد سنجش‌ازدور و سیستم اطلاعات جغرافیایی، دانشگاه تهران، تهران، ایران

2 استادیار گروه سنجش‌ازدور و سیستم اطلاعات جغرافیایی، دانشگاه تهران، تهران، ایران

چکیده

در چند دهۀ اخیر مناطق شهری درنتیجۀ رشد جمعیت و توسعۀ اقتصادی، به‌سرعت گسترش‌یافته است. اطلاع از روند تغییرات سریع کاربری اراضی، برای برنامه‌ریزان و مدیران شهری ضروری است. تصاویر سنجش‌ازدور، یکی از منابع مطمئن برای استخراج مناطق ساخته‌شده به‌حساب می‌آیند. از بین انواع مختلف تصاویر سنجش‌ازدور، تصاویر راداری در استخراج مناطق شهری کارایی مناسبی دارند. سنجنده‌های راداری در قطبش‌های مختلف و در مدارهای صعودی و نزولی تصویربرداری می‌کنند. مقادیر ضریب بازپخش در قطبش‌ها و مدارهای برداشت متفاوت، به ویژگی‌های مختلفی از پدیده‌ها وابسته است و امکان شناسایی بهتر پدیده‌ها را فراهم می‌کند. در این مطالعه به بررسی ارزیابی عملکرد تصاویر صعودی و نزولی سنتینل-1 در دو باند VV و VH، در استخراج مناطق ساخته‌شدۀ شهر اصفهان پرداخته‌ شده است. برای تفکیک مناطق شهری از سایر مناطق، از روش آستانه‌گذاری خودکار اتسو استفاده شد. خروجی به‌دست‌آمده از اعمال مقادیر آستانه، با تصاویر باقدرت تفکیک بالای گوگل ارث مقایسه شد. مقایسۀ تصاویر برداشت‌شده در دو مدار صعودی و نزولی نشان می‌دهد صرف‌نظر از قطبش، تصاویر نزولی دقت بالاتری نسبت به تصاویر صعودی داشته‌اند، صحت کلی باندهای VV و VH به‌ترتیب برای تصاویر نزولی برابر 90 و 87 درصد و برای تصاویر صعودی 88 و 84 بوده است. همچنین تصاویر باندVV  در هر دو مدار تصویربرداری در مقایسه با باند VH کارایی بهتری در استخراج مناطق ساخته‌شده داشته است. براساس نتایج تحقیق، تصاویر نزولی باند VV سنتینل-1 با صحت کلی 90 درصد، بالاترین دقت را در مقایسه با سایر تصاویر در استخراج مناطق ساخته‌شدۀ شهر اصفهان دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Detection of urban built-up areas by using Sentinel-1images from different orbits, Case study: Isfahan

نویسندگان [English]

  • Shahin Jafari 1
  • Sara Attarchi 2
1 Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran
2 Assistant professor, Remote sensing and GIS Department, Faculty of Geography, University of Tehran
چکیده [English]

In recent decades, built-up urban areas have expanded rapidly as a result of population growth and economic development. In developing countries, this trend is faster. It is essential to Know the trend of rapid land-use changes for urban managers to plan for the future growth of the city while providing appropriate urban services. Satellite imagery is a reliable source in built-up areas extraction. Among the various types of satellite imagery, radar imagery is effective in urban areas extraction because they captured images in all weather conditions and ascending and descending orbits. In this study, the performance of the time series of ascending and descending images of Sentinel 1 in VV and VH bands were evaluated in the extraction of built-up areas. The areas with high slopes were masked using a digital elevation model to reduce the effects of geometric distortions. The threshold of the built-up areas was extracted from the image histogram using the Otsu automatic threshold algorithm. The results were further evaluated by a high-resolution Google Earth image. In both polarimetric bands, the image in descending orbits has higher overall accuracies in comparison to ascending orbits. The overall accuracies in VV and VH were 90% and 87% in the descending orbit and 88% and 84% in ascending orbit, respectively. The findings of this study show that the VV image has higher accuracies in both orbits in comparison to the VH image. The descending image in VV has 90% overall accuracy in urban area extraction in Isfahan city.

کلیدواژه‌ها [English]

  • Urban built-up area
  • Isfahan
  • Detection
  • Remoe sensing
  • SAR Images
حاجی علی، مژگان، مقدس‌نژاد، فریدون و ذاکری، حمزه (1398). ارائۀ شاخصی جدید به‌منظور ارزیابی خودکار توزیع یکنواخت اندود سطحی و نفوذی روسازی راه‌ها. نشریۀ مهندسی عمران امیرکبیر، 57-40.
زیاری، کرامت‌اله، پوراحمد، احمد و قهرائی، حسین (1398). سیاست‌های زمین‌شهری و تأثیر آن در توسعۀ فیزیکی شهر اصفهان. پژوهش‌های جغرافیای انسانی، 1(51)، 211-227.
سفیانیان، علیرضا (1388). بررسی تغییرات کاربری اراضی محدودۀ شهر اصفهان با استفاده از تکنیک آشکارسازی برداری تغییرات طی سال‌های ۱۳۶۶ تا ۱۳۷۷. نشریۀ علوم آب و خاک (علوم و فنون کشاورزی و منابع طبیعی۱۳(49)، 153-164.
عزی‌مند، کیوان، عبداللهی کاکرودی، عطاءاله و کیاورز مقدم، مجید (1396). طبقه‌بندی و شناسایی تغییرات اراضی ساخته‌شده با استفاده از تصاویر سنجش‌ازدور. نشریۀ پژوهش‌های جغرافیای برنامه‌ریزی شهری، 5(3)، 445-468.
عطارچی، سارا (1398). کارایی شاخص‌های راداری در استخراج سطوح نفوذناپذیر شهری با استفاده از تصویر رادار تمام پلاریمتریک. پژوهش‌های جغرافیای برنامه‌ریزی شهری، 7(4)، 837-854.
فاطمی، سیدباقر، مباشری، محمدرضا و آبکار، علی‌اکبر (1393). تأثیر استفاده از اطلاعات همسایگی مکانی در دقت خوشه‌بندی تصاویر ماهواره‌ای. نشریۀ علمی-پژوهشی علوم و فنون نقشه‌برداری، 3(4)، 77-89.
مرکز آمار ایران (1335). نتایج تفصیلی سرشماری عمومی و نفوس و مسکن.
مرکز آمار ایران (1390). نتایج تفصیلی سرشماری عمومی و نفوس و مسکن.
Adamowski, J., & Prokoph, A. (2013). Assessing the Impacts of the Urban Heat Island Effect on Streamflow Patterns in Ottawa, Canada. Journal of Hydrology, 496, 225-237.
Amani, M., Salehi, B., Mahdavi, S., Granger, J. E., Brisco, B., & Hanson, A. (2017). Wetland Classification Using Multi-Source and Multi-Temporal Optical Remote Sensing Data in Newfoundland and Labrador, Canada. Canadian Journal of Remote Sensing, 43(4), 360-373.
Angel, S., Parent, J., Civco, D. L., Blei, A., & Potere, D. (2011). The Dimensions of Global Urban Expansion: Estimates and Projections for All Countries, 2000–2050. Progress in Planning, 75(2), 53-107.
Attarchi, S. (2019). Efficiency Evaluation of SAR-Derived Indices in Urban Impervious Surfaces Extraction Using Full Polarimetric Image. Geographical Urban Planning Research (GUPR), 7(4), 837-854. (In Persian)
Azmedroub, B., Ouarzeddine, M., & Souissi, B. (2016). Extraction of Urban Areas from Polarimetric SAR Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(6), 2583-2591.
Cao, H., Zhang, H., Wang, C., & Zhang, B. (2018). Operational Built-Up Areas Extraction for Cities in China Using Sentinel-1 SAR Data. Remote Sensing, 10(6), 874.
Castles, S., De Haas, H., & Miller, M. J. (2013). The Age of Migration: International Population
 Movements in the Modern World. Macmillan International Higher Education.
Chen, Y., Li, X., Liu, X., Ai, B., & Li, S. (2016). Capturing the Varying Effects of Driving Forces over Time for the Simulation of Urban Growth by Using Survival Analysis and Cellular Automata. Landscape And Urban Planning, 152, 59-71.
Chini, M., Pelich, R., Hostache, R., Matgen, P., & Lopez-Martinez, C. (2018a). Polarimetric and Multitemporal Information Extracted from Sentinel-1 SAR Data to Map Buildings. Paper Presented at the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium.
Chini, M., Pelich, R., Hostache, R., Matgen, P., & Lopez-Martinez, C. (2018b). Towards a 20 m Global Building Map from Sentinel-1 SAR Data. Remote Sensing, 10(11), 1833.
Deng, C., & Wu, C. (2013). Examining the Impacts of Urban Biophysical Compositions on Surface Urban Heat Island: A Spectral Unmixing and Thermal Mixing Approach. Remote Sensing of Environment, 131, 262-274.
Dostálová, A., Wagner, W., Milenković, M., & Hollaus, M. (2018). Annual Seasonality in Sentinel-1 Signal for Forest Mapping and Forest Type Classification. International Journal of Remote Sensing, 39(21), 7738-7760.
Engeset, R. V., & Weydahl, D. J. (1998). Analysis of Glaciers and Geomorphology on Svalbard Using Multitemporal ERS-1 SAR Images. IEEE Transactions on Geoscience and Remote Sensing, 36(6), 1879-1887.
Ezimand, K., Abdollahi Kakroodi, A., Kiavarz Moghaddam, M. (2017). Classification and Change Detection of Urban Built-up Lands Using Remote Sensing Images. Geographical Urban Planning Research (GUPR), 5(3), 445-468. (In Persian)
Falah, N., Karimi, A., & Harandi, A. T. (2020). Urban Growth Modeling Using Cellular Automata Model and AHP (Case Study: Qazvin City). Modeling Earth Systems and Environment, 6(1), 235-248.
Fatemi, S. B., Mobasheri, M. R., Abkar, A. A. (2014). A Comparative Study of Few Satellite Image Clustering Methods Based on Spatial Neighborhood Information. Journal of Geomatics Science and Technology, 3(4), 77-90. (In Persian)
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sensing of Environment, 202, 18-27.
Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global Change and the Ecology of Cities. Science, 319(5864), 756-760.
Guo, H., Yang, H., Sun, Z., Li, X., & Wang, C. (2014). Synergistic Use of Optical and PolSAR Imagery for Urban Impervious Surface Estimation. Photogrammetric Engineering & Remote Sensing, 80(1), 91-102.
Haas, J., & Ban, Y. (2017). Sentinel-1A SAR and Sentinel-2A MSI Data Fusion for Urban Ecosystem Service Mapping. Remote Sensing Applications: Society and Environment, 8, 41-53.
Hajiali, M., Moghaddasnezhad, F., Zakeri, H. (2021). Providing Criterion to Automatic Evaluation of the Accuracy of Distribution of Tack Coat and Prime Coat Pavement Roads. Amirkabir Journal of Civil Engineering, 53(3), 40-57. (In Persian)
Henderson, F. M., & Lewis, A. J. (1998). Principles and Applications of Imaging Radar. Manual of Remote Sensing: Vol. 2.
Holobâcă, I.-H., Ivan, K., & Alexe, M. (2019). Extracting Built-Up Areas from Sentinel-1 Imagery Using Land-Cover Classification and Texture Analysis. International Journal of Remote Sensing, 40(20), 8054-8069.
Hoornweg, D., Sugar, L., & Trejos Gómez, C. L. (2011). Cities and Greenhouse Gas Emissions: Moving Forward. Environment and Urbanization, 23(1), 207-227.
Hu, X., & Weng, Q. (2011). Estimating Impervious Surfaces from Medium Spatial Resolution Imagery: a Comparison between Fuzzy Classification and LSMA. International Journal of Remote Sensing, 32(20), 5645-5663.
Huang, H., Chen, Y., Clinton, N., Wang, J., Wang, X., Liu, C.,... Zheng, Y. (2017). Mapping Major Land Cover Dynamics in Beijing Using All Landsat Images in Google Earth Engine. Remote sensing of Environment, 202, 166-176.
Inkoom, J. N., Nyarko, B. K., & Antwi, K. B. (2017). Explicit Modeling of Spatial Growth Patterns in Shama, Ghana: An Agent-Based Approach. Journal of Geovisualization and Spatial Analysis, 1(1-2), 7.
Kaya, S., Basar, U. G., Karaca, M., & Seker, D. Z. (2012a). Assessment of Urban Heat Islands Using Remotely Sensed Data. Ekoloji, 21(84), 107-113.
Kaya, S., Seker, D. Z., & Tanik, A. (2012b). Analysis of Urbanized Areas Using VIS Components Model. Fresenius Environmental Bulletin, 21(11), 3243-3248.
Khosravi, I., Safari, A., Homayouni, S., & McNairn, H. (2017). Enhanced Decision Tree Ensembles for Land-Cover Mapping from Fully Polarimetric SAR Data. International Journal of Remote Sensing, 38(23), 7138-7160.
Kraff, N. J., Wurm, M., & Taubenböck, H. (2020). The Dynamics of poor Urban Areas-Analyzing Morphologic Transformations across the Globe Using Earth Observation Data. Cities, 107, 102905.
Lamphar, H. A. S. (2020). Spatio-Temporal Association of Light Pollution and Urban Sprawl Using Remote Sensing Imagery and GIS: A Simple Method Based in Otsu´ s Algorithm. Journal of Quantitative Spectroscopy and Radiative Transfer, 251, 107060.
Lagarias, A. (2012). Urban Sprawl Simulation Linking Macro-Scale Processes to Micro-Dynamics through Cellular Automata, an Application in Thessaloniki, Greece. Applied Geography, 34, 146-160.
Liu, X., Liang, X., Li, X., Xu, X., Ou, J., Chen, Y.,... Pei, F. (2017). A Future Land Use Simulation Model (FLUS) for Simulating Multiple Land Use Scenarios by Coupling Human and Natural Effects. Landscape and Urban Planning, 168, 94-116.
Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Change Detection Techniques. International Journal of Remote Sensing, 25(12), 2365-2401.
Lu, Y., Coops, N. C., & Hermosilla, T. (2016). Regional Assessment of Pan-Pacific Urban Environments over 25 Years Using Annual Gap Free Landsat Data. International Journal of Applied Earth Observation and Geoinformation, 50, 198-210.
Lv, Z. Y., Liu, T. F., Zhang, P., Benediktsson, J. A., Lei, T., & Zhang, X. (2019). Novel Adaptive Histogram Trend Similarity Approach for Land Cover Change Detection by Using Bitemporal Very-High-Resolution Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 57(12), 9554-9574.
Ma, X., Li, C., Tong, X., & Liu, S. (2019). A new fusion approach for extracting urban built-up Areas from Multisource Remotely Sensed Data. Remote Sensing, 11(21), 2516.
Mahdavi, S., Amani, M., & Maghsoudi, Y. (2019). The Effects of Orbit Type on Synthetic Aperture RADAR (SAR) backscatter. Remote sensing letters, 10(2), 120-128.
Mahdavi, S., Maghsoudi, Y., & Amani, M. (2017a). Effects of Changing Environmental Conditions on Synthetic Aperture Radar Backscattering Coefficient, Scattering Mechanisms, and Class Separability in a Forest Area. Journal of Applied Remote Sensing, 11(3), 036015.
Mahdavi, S., Salehi, B., Amani, M., Granger, J. E., Brisco, B., Huang, W., & Hanson, A. (2017b). Object-based Classification of Wetlands in Newfoundland and Labrador Using Multi-Temporal PolSAR Data. Canadian Journal of Remote Sensing, 43(5), 432-450.
Mcdonald, K. C., Dobson, M. C., & Ulaby, F. T. (1991). Modeling Multi-Frequency Diurnal Backscatter from a Walnut Orchard. IEEE Transactions on Geoscience and Remote Sensing, 29(6), 852.
Mcdonald, K. C., Zimmermann, R., Way, J., & Oren, R. (1992). An investigation of the Relationship between Tree Water Potential and Dielectric Constant. IGARSS '92; Proceedings of the 12th Annual International Geoscience and Remote Sensing Symposium, Houston, TX, May 26-29, 1992. Vol. 1.
Mohapatra, S. N., Pani, P., & Sharma, M. (2014). Rapid Urban Expansion and Its Implications on Geomorphology: A Remote Sensing and GIS Based Study. Geography Journal, 2014.
Mora, O., Ordoqui, P., Iglesias, R., & Blanco, P. (2016). Earthquake rapid mapping using ascending and descending Sentinel-1 TOPSAR interferograms. Procedia Computer Science, 100, 1135-1140.
Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62-66.
Powers, D. M. (2020). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint arXiv:2010.16061.
Richards, J. A. (2009). Remote sensing with imaging radar (Vol. 1): Springer.
Rignot, E., Way, J. B., McDonald, K., Viereck, L., Williams, C., Adams, P.,... Shi, J. (1994). Monitoring of environmental conditions in taiga forests using ERS-1 SAR. Remote Sensing of environment, 49(2), 145-154.
Roychowdhury, K. (2016). Comparison between Spectral, Spatial and Polarimetric Classification of Urban and Periurban Landcover Using Temporal Sentinel–1 Images. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 789.
Salazar, A., Baldi, G., Hirota, M., Syktus, J., & McAlpine, C. (2015). Land use and land cover change impacts on the regional climate of non-Amazonian South America: A review. Global and Planetary Change, 128, 103-119.
Sayedain, S. A., Maghsoudi, Y., & Eini-Zinab, S. (2020). Assessing the use of cross-orbit Sentinel-1 images in land cover classification. International Journal of Remote Sensing, 41(20), 7801-7819.
Sekertekin, A., Abdikan, S., & Marangoz, A. M. (2018). The acquisition of impervious surface area from LANDSAT 8 satellite sensor data using urban indices: a comparative analysis. Environmental monitoring and assessment, 190(7), 381.
Sekertekin, A., Kutoglu, S. H., & Kaya, S. (2016). Evaluation of spatio-temporal variability in Land Surface Temperature: A case study of Zonguldak, Turkey. Environmental monitoring and assessment, 188(1), 30.
Sezgin, M., & Sankur, B. (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic imaging, 13(1), 146-166.
Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A., & Skakun, S. (2017). Exploring Google Earth Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping. frontiers in Earth Science, 5, 17.
Simone, G., Farina, A., Morabito, F. C., Serpico, S. B., & Bruzzone, L. (2002). Image fusion techniques for remote sensing applications. Information fusion, 3(1), 3-15.
Soffianian, A. (2009). A Study on Land Use Change in Isfahan. Journal of Water and Soil Science, 13(49), 153-164. (In Persian)
Solari, L., Del Soldato, M., Montalti, R., Bianchini, S., Raspini, F., Thuegaz, P.,... Casagli, N. (2019). A Sentinel-1 based hot-spot analysis: landslide mapping in north-western Italy. International Journal of Remote Sensing, 40(20), 7898-7921.
Son, N.-T., Chen, C.-F., Chen, C.-R., & Minh, V.-Q. (2018). Assessment of Sentinel-1A data for rice crop classification using random forests and support vector machines. Geocarto International, 33(6), 587-601.
Statistical Center of Iran (1956). Detailed Results of the General Census and Population and Housing. (In Persian)
Statistical Center of Iran (2011). Detailed Results of the General Census and Population and Housing. (In Persian)
Taghadosi, M. M., Hasanlou, M., & Eftekhari, K. (2019). Soil Salinity Mapping Using Dual-Polarized SAR Sentinel-1 Imagery. International Journal of Remote Sensing, 40(1), 237-252.
Tripathy, A., Agrawal, A., & Rath, S. K. (2016). Classification of Sentiment Reviews Using N-Gram Machine Learning Approach. Expert Systems with Applications, 57, 117-126.
Wang, Y., Li, Z., Zeng, C., Xia, G.-S., & Shen, H. (2020). An urban Water Extraction Method Combining Deep Learning and Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 768-781.
Weng, Q. (2012). Remote Sensing of Impervious Surfaces in the Urban Areas: Requirements, Methods, and Trends. Remote Sensing of Environment, 117, 34-49.
Whelen, T., & Siqueira, P. (2018). Time-series Classification of Sentinel-1 Agricultural Data over North Dakota. Remote Sensing Letters, 9(5), 411-420.
Wood, D., McNairn, H., Brown, R., & Dixon, R. (2002). The Effect of Dew on the Use of RADARSAT-1 for Crop Monitoring: Choosing between Ascending and Descending Orbits. Remote Sensing of Environment, 80(2), 241-247.
Xiang, D., Tang, T., Hu, C., Fan, Q., & Su, Y. (2016). Built-up Area Extraction from PolSAR Imagery with Model-Based Decomposition and Polarimetric Coherence. Remote Sensing, 8(8), 685.
Xiong, J., Thenkabail, P. S., Gumma, M. K., Teluguntla, P., Poehnelt, J., Congalton, R. G.,... Thau, D. (2017). Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. ISPRS Journal of Photogrammetry and Remote Sensing, 126, 225-244.
Xu, S., Qi, Z., Li, X., & Yeh, A. G.-O. (2019). Investigation of the effect of the incidence angle on land cover classification using fully polarimetric SAR images. International Journal of Remote Sensing, 40(4), 1576-1593.
Yar, P., & Huafu, J. (2019). Horizontal Development of Built-Up Area and Its Impacts on the Agricultural Land of Peshawar City District (1991–2014). Journal of the Indian Society of Remote Sensing, 47(9), 1537-1545.
Zhang, J., Pu, R., Yuan, L., Wang, J., Huang, W., & Yang, G. (2014). Monitoring Powdery Mildew of Winter Wheat by Using Moderate Resolution Multi-Temporal Satellite Imagery. PloS one, 9(4), e93107.
Zheng, X., Ye, H., & Tang, Y. (2017). Image Bi-Level Thresholding Based On Gray Level-Local Variance Histogram. Entropy, 19(5), 191.
Ziari, K., Pourahmad, A., Ghahraei, H. (2019). Urban Land Policies and Their Effects on the Physical Development of Isfahan City, Iran. Human Geography Research, 1(51), 211-227. (In Persian)