بررسی تأثیر خدمت اکوسیستمی خنک‌کنندگی زیرساخت‌های سبز شهری بر کاهش بار گرمای محیطی و بهره‌وری انرژی در کلان‌شهر تبریز

نوع مقاله : پژوهشی - کاربردی

نویسندگان

گروه جغرافیا و برنامه‌ریزی شهری، دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران

10.22059/jurbangeo.2024.363482.1850

چکیده

در این پژوهش به ارزیابی تأثیرات خدمت اکوسیستمی خنک‌کنندگی زیرساخت‌های سبز بر کاهش جزایر گرمایی شهری تبریز پرداخته‌شده است. بدین‌صورت که ظرفیت کاهش جزایر گرمایی تبریز در هر سه دوره زمانی 1363، 1381 و 1401 در 5 کلاس از بهترین حالت تا بدترین حالت با استفاده از مدل سرمایش شهری نرم‌افزار InVEST مورد ارزیابی قرار گرفتند. نتایج نشان داد که کلان‌شهر تبریز در بهترین حالت در سال 1363 یعنی در کلاس 69/0 تا 83/0 درصد 47/15 درصد، در سال 1381 در کلاس 66/0 تا 90/0 درصد 63/15 درصد و در سال 1401 در کلاس 69/0 تا 83/0 درصد 93/13 درصد توانسته جزایر گرمایی را کاهش دهد. به عبارتی کلان‌شهر تبریز در کاهش جزایر گرمایی در هر سه دوره به‌خوبی عمل‌نکرده و در بدترین شرایط قرار دارد. در هر سه دوره زمانی، الگوی کاهش جزایر گرمایی تبریز منطبق با الگوی کاربری اراضی کشاورزی و فضای سبز از هر سه نوع الگوی خوشه‌ای، بلوکی و تکه‌تکه بوده است. الگوی کاهش جزایر گرمایی تبریز در سال 1401 بر خلاف سال‌های 1363 و 1381 بیشتر از نوع تکه‌تکه و کمتر از نوع خوشه‌ای و بلوکی بوده که این مورد نشان‌دهنده این است که زیرساخت‌های سبز تبریز رفته‌رفته تکه‌تکه و کوچک‌شده است. کلان‌شهر تبریز در سال‌های 1363، 1381 و 1401 به ترتیب 226640، 562269 و 1263294 مگاوات ساعت صرفه‌جویی انرژی ناشی از کاهش جزایر گرمایی به‌واسطه زیرساخت‌های سبز شهری را داشته است

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the effect of the cooling ecosystem service of urban green infrastructure on the mitigating of environmental heat load and energy efficiency in the metropolitan of Tabriz

نویسندگان [English]

  • Mahdi Herischian
  • Hassan Mahmoudzadeh
  • Rasoul Ghorbani
Department of Geography and Urban Planning, Faculty of Planning and Environmental Sciences, University of Tabriz, Tabriz, Iran
چکیده [English]

ABSTRACT
This research evaluated the effects of green infrastructure cooling ecosystem service on mitigating urban heat islands in Tabriz metropolitan areas. In this way, the mitigation capacity of the heat islands of Tabriz in all three periods of 1984, 2002, and 2022 was evaluated in 5 classes, from the best case to the worst case, using the urban cooling model of the InVEST software. The results showed that Tabriz condition in 1984, i.e., 15.47% in the class of 0.69 to 0.83%; in 2002, 15.63% in the class of 0.66 to 0.90%; and in 2022, 13.93% in the class of 0.69 to 0.83%, was able to mitigate heat islands. In other words, the Tabriz metropolitan did not perform well in mitigating heat islands in all three periods and is in the worst condition. In all three time periods, the mitigation pattern of heat islands in Tabriz has been consistent with the pattern of agricultural land use and green space of all three types of cluster, block, and fragmented patterns. The pattern of mitigation of heat islands in Tabriz in 2022, unlike in 1984 and 2002, was more fragmented and less than cluster and block type, indicating that Tabriz's green infrastructure has gradually become fragmented and smaller. In 1984, 2002, and 2022, Tabriz Metropolitan had 226,640, 562,269, and 1,263,294 megawatt hours of energy savings due to the mitigation of heat islands due to urban green infrastructure
Extended Abstract
Introduction
During the past decades, with the rapid growth of urbanization, the subsequent increase in land use changes, and the transformation of natural surfaces into impervious and artificial urban surfaces, urban heat islands have become more intense. Urban heat islands harm the environment and the health and welfare of humans and other living beings in cities. Meanwhile, urban ecosystems such as urban green infrastructure such as vegetation, urban green spaces, urban parks, and urban water infrastructure such as rivers and urban water bodies play an increasing role in mitigating urban heat islands. Tabriz is one of the megacities of Iran that has experienced rapid urbanization and growth in recent decades. Urban heat islands, polluted air, and high temperatures threaten urban viability in Tabriz. Therefore, the problem of urban heat island tension has become a serious issue in this metropolitan. Therefore, in this research, the effects of cooling ecosystem services of green infrastructure on the mitigation of urban heat islands in Tabriz have been evaluated.
 
Methodology
The current research is descriptive-analytical in terms of method and has a developmental-applicative nature. The required information was collected using the library, documentary, electronic sources, surveys, and field observations. This research used the urban cooling model from the InVEST 3.12.0 software package. The urban cooling model calculates the mitigation of urban heat islands based on shading, evaporation transpiration, albedo, and the distance from cooling islands (such as parks). In this model, vegetation cover is used to estimate the mitigation of heat islands. Finally, the model estimates the service value of heat island mitigation using two evaluation methods: energy consumption (potential energy reduction) and labor productivity (light and heavy work). The main inputs of this model include a land use/land cover raster map, a reference evaporation and transpiration raster map (et0), a biophysical table containing information about each of the land use/land cover map classes, a vector map of city buildings and energy consumption rate table is based on the type of buildings and air temperature. In this research, data related to Landsat satellite images (related to three time periods as 1984, 2002, and 2022), land use/land cover, meteorological data, biophysical table, and a detailed plan map of the 2016 Tabriz municipality have been used. This research analyzes the data using GIS and the urban cooling model of InVEST software.
 
Results and discussion
The results showed that Tabriz in 1984 in class 0.097 to 0.18 percent, i.e. the worst condition is 54.65 percent, and then in class 0.19 to 0.34 percent, 17.98 percent, and in class 0.69 to 0.83 percent in the best condition, 15.47 percent, in 2002 in class 0.097 to 0.18 percent, that is, in the worst condition, 46.34 percent, after that class 0.19 to 0.31 percent with 18.80 percent and class 0.66 to 0.90 percent means the best condition with 15.63 percent and in 2022 in class 0.098 to 0.18 percent that is in the worst condition 34.90 percent and after that in class 0.36 to 0.50 percent that is, 33.38 percent, and in the class 0.69 to 0.83 percent in the best condition, 13.93 percent dedicated for the greatest mitigation of urban heat islands. In other words, Tabriz has not performed well in mitigating heat islands and is in the worst condition. In all three periods of 1984, 2002, and 2022, the urban heat island mitigation pattern in Tabriz was consistent with agricultural land use and green space (the main cold islands of Tabriz metropolitan) of all three types of cluster, block, and fragmented patterns. However, in 2022, it was more fragmented, less clustered, and blocky.
 
Conclusion
The results showed that in 1984, in the parts of Tabriz metropolitan where there was agricultural use, green spaces, and low residential density, respectively, the most significant mitigation of heat islands occurred, and in the parts where there were barren lands, high and medium residential density, the mitigation of heat islands is in the worst situation. In 2002, in the parts of Tabriz where there are agricultural lands and green spaces, we saw the greatest mitigation of heat islands. In the parts with barren lands and high and medium residential density, we saw a reduction of low heat islands. In 2022, respectively, in the areas where there were agricultural lands, green spaces, open spaces, and low residential density, the greatest rate of heat island mitigation, and in the areas where there were barren lands, high and medium residential density, the least mitigation of heat islands has occurred. Also, in 1984, 2002, and 2022, green infrastructure in Tabriz neutralized 82.81, 90 and 82.88% of urban heat islands, respectively. Overall, the results showed that the metropolitan of Tabriz did not perform well in mitigating heat islands in all three time periods of 1984, 2002, and 2022 and is in the worst condition. Considering that Iran is one of the developing countries and Tabriz, as one of the megacities of Iran, has undergone rapid urbanization in recent decades, the green infrastructures in Tabriz are more fragmented, and the fact that the metropolitan of Tabriz in all three periods, the amount of green space use was lower than other uses. Therefore, this metropolitan area performed poorly in mitigating urban heat islands in all three periods.
 
Funding
There is no funding support.
 
Authors’ Contribution
Authors contributed equally to the conceptualization and writing of the article. All of the authors approved thecontent of the manuscript and agreed on all aspects of the work declaration of competing interest none.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Urban Heat Islands
  • Urban Cooling Ecosystem Service
  • Green Infrastructure
  • Urban Cooling Model
  • InVEST Software
  1. آزادی مبارکی، محمد و احمدی، محمود. (1399). بررسی جزایر حرارتی تبریز با رویکرد زیست پذیری شهری، نشریه پژوهش‌های دانش زمین، 11(43)، 245-262. https://doi: 10.52547/esrj.11.3.245
  2. آزادی مبارکی، محمد و احمدی، محمود. (1400). بررسی جزایر حرارتی شهری کلان‌شهر تبریز با استفاده از داده‌های چند زمانه ماهواره LANDSAT8 مبتنی بر روش تحلیل لکه‌های داغ. فصلنامه علمی برنامه‌ریزی منطقه‌ای، 11 (43)، 63-47. https://doi: 10.30495/jzpm.2021.3992
  3. احمدپور، امیر؛ سلیمانی، کریم؛ شکری، مریم و قربانی، جمشید. (1393). مقایسة میزان کارآیی سه روش رایج طبقه‌بندی نظارت‌شده داده‌های ماهواره‌ای در مطالعه پوشش گیاهی. مجله سنجش‌ازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 5 (3)، 77-89.
  4. پوردیهیمی، شهرام؛ تحصیل دوست، محمد و عامری، پوریا. (1398). تأثیر پوشش گیاهی بر کاهش شدت جزایر حرارتی شهر (نمونه موردی: کلان‌شهر تهران). فصلنامه پژوهش‌های سیاست‌گذاری و برنامه‌ریزی انرژی، 5 (16)، 122-97.
  5. تابعی، نادر؛ بابایی اقدم، فریدون و حکیمی، هادی. (1401). شهر همه‌شمول؛ رویکردی نوین در برنامه‌ریزی شهری مطالعه موردی: شهر تبریز. مجله پژوهش‌های جغرافیای برنامه‌ریزی شهری، 10 (2)، 115-132. https://doi.org/ 10.22059/JURBANGEO.2022.335543.1627
  6. ریاحی بختیاری، حمیدرضا. (1379). تعیین مناسب‌ترین روش تهیه نقشه‌های پوشش منابع طبیعی در مقیاس 1:250000 با استفاده از داده‌های ماهواره‌ای در ناحیه دشت ارژن. پایان‌نامه کارشناسی ارشد، دانشکده منابع طبیعی، دانشگاه تهران، تهران.
  7. زبیری، محمود و مجد، علیرضا. (1378). آشنایی با فن سنجش‌ازدور و کاربرد آن در منابع طبیعی. چاپ دوم، تهران: انتشارات دانشگاه تهران، موسسه انتشارات و چاپ.
  8. زینالی عظیم، علی؛ حاتمی گلزاری، الهام؛ کرمی، اسلام و بابازاده اسکوئی، سولماز. (1400). سنجش پایداری محیطی شهر تبریز بر اساس شاخص‌های زیست‌محیطی. فصلنامه پایداری، توسعه و محیط‌زیست، 2 (3)، 41-59. https://doi.org/JSDE-2111-1168
  9. ساروئی، سعید. (1378). بررسی امکان طبقه‌بندی جنگل به لحاظ تراکم در جنگل‌های زاگرس به کمک داده‌های ماهواره‌ای. پایان‌نامه کارشناسی ارشد، دانشکده منابع طبیعی، دانشگاه تهران، تهران.
  10. علیزاده، امین. (1377). اصول طراحی سیستم‌های آبیاری. چاپ سوم، مشهد: انتشارات آستان قدس رضوی، دانشگاه امام رضا (ع).
  11. فربودی، مرضیه و زمانی، زهرا. (1401). کاهش جزایر حرارتی شهری از طریق افزایش سبزینگی و سطوح نفوذپذیر در تهران. فصلنامه علوم و تکنولوژی محیط‌زیست، 24(2)، 31-45. https://doi.org/10.30495/jest.2022.58441.5276
  12. کاظمی، محمد؛ نوحه‌گر، احمد و میردادی، میرداد. (1396). انتخاب بهترین روش طبقه‌بندی در تهیه نقشه کاربری اراضی با استفاده از داده‌های سنجنده OLI ماهواره لندست 8 (مطالعه موردی حوضه آبخیز بهشت گمشده، استان فارس). فصلنامه اکوسیستم‌های طبیعی ایران، 8 (1)، 79-97.
  13. مرتضوی اصل، سید کامیار؛ سعیدی رضوانی، نوید و رضایی، محمود. (1401). ارزیابی میزان تأثیر ذرات معلق و پوشش گیاهی بر تشکیل جزایر گرمایی و خنک در شهر تهران. نشریه تحلیل فضایی مخاطرات محیطی، 9(1)، 97-114. https://doi.org/ 20.1001.1.24237892.1401.9.1.6.2
  14. معاونت برنامه‌ریزی و توسعه سرمایه انسانی شهرداری تبریز. (1401). سالنامه آماری شهر و شهرداری تبریز (سال 1399)، چاپ اول، تبریز: معاونت برنامه‌ریزی و توسعه سرمایه انسانی شهرداری تبریز، اداره کل برنامه‌وبودجه، گروه آمار و تحلیل اطلاعات.
  15. ملکی مرشت، رقیه؛ سبحانی، بهروز و مرادی، مسعود. (1400). بررسی تأثیر امواج گرمایی بر جزایر حرارتی کلان‌شهر تبریز. فصلنامه جغرافیا و مخاطرات محیطی، 10(38)، 111-128. https:// doi: 10.22067/geoeh.2021.69683.1040
  16. مهندسین مشاور نقش محیط. (1391). طرح توسعه و عمران (جامع) شهر تبریز. گزارش محیطی مرحلة موجود، وزارت راه و شهرسازی، اداره کل راه و شهرسازی استان آذربایجان شرقی.
  17. نامجومنش، جواد؛ کارگر، بهمن و زیویار، پروانه. (1401). مدیریت شهری و بازآفرینی فضاهای سبز و تأثیر آن در تعدیل جزایر گرمایی. ماهنامه جامعه‌شناسی سیاسی ایران، 5(12)، 2332-2352. https://doi: 10.30510/psi.2022.299994.2144
  18. Abdulateef, M. F., & Al-Alwan, H. A. (2022). The effectiveness of urban green infrastructure in reducing surface urban heat island. Ain Shams Engineering Journal13(1), 101526. https://doi.org/10.1016/j.asej.2021.06.012
  19. Ahern, J. (2007). Green Infrastructure for Cities: The Spatial Dimension In Cities of the Future: Towards Integrated Sustainable Water and Landscape Management, edited by V. Novotny and PR Brown. Novotny, Vladimir, 265-283.
  20. Ahmedpour, A., Soleimani, K., Shokri, M., & Ghorbani, J. (2014). Comparison of the effectiveness of three common methods of supervised classification of satellite data in vegetation study. Journal of Remote Sensing and GIS Application in Natural Resources Sciences, 5 (3), 77-89. [In Persian].
  21. Akbari, H., Matthews, H. D., & Seto, D. (2012). The long-term effect of increasing the albedo of urban areas. Environmental Research Letters, 7(2), 1–10. https://doi.org/10.1088/1748-9326/7/2/024004
  22. Al-doski, J., Mansor, S. B., & Shafri, H. Z. M. (2013). Change detection process and techniques. Civil and Environmental Research3(10).
  23. Aleksandrowicz, O., Vuckovic, M., Kiesel, K., & Mahdavi, A. (2017). Current trends in urban heat island mitigation research: Observations based on a comprehensive research repository. Urban Climate, 21, 1–26. https://doi.org/10.1016/j.uclim.2017.04.002
  24. Alizadeh, A. (1998). Principles of designing irrigation systems, Mashhad: Astan Quds Razavi Publishing, Imam Reza University (AS), Third Edition. [In Persian].
  25. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
  26. Aram, F., García, E. H., Solgi, E., & Mansournia, S. (2019). Urban green space cooling effect in cities. Heliyon, 5(4). https://doi.org/10.1016/j.heliyon.2019.e01339
  27. Arbuthnott, K. G., & Hajat, S. (2017). The health effects of hotter summers and heat waves in the population of the United Kingdom: a review of the evidence. Environmental health, 16(1), 1-13. https://doi.org/10.1186/s12940-017-0322-5
  28. Arnfield, A. J. (2003). Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology: a Journal of the Royal Meteorological Society, 23(1), 1-26. https://doi.org/10.1002/joc.859
  29. Azadi Mubaraky, M., & Ahmadi, M. (2020). Investigating the heat islands of Tabriz with the approach of urban livability. Researches earth sciences, 11(43), 245-262. https://doi: 10.52547/esrj.11.3.245 [In Persian].
  30. Azadi Mubaraky, M., & Ahmadi, M. (2021). Investigation of urban heat islands of Tabriz metropolis using multi-time data of LANDSAT8 satellite based on hot spot analysis method. Regional Planning, 11(43), 47-63. https://doi: 10.30495/jzpm.2021.3992 [In Persian].
  31. Bolund, P., & Hunhammar, S. (1999). Ecosystem services in urban areas. Ecological economics, 29 (2), 293-301. https://doi.org/10.1016/S0921-8009(99)00013-0
  32. Boumans, R.J., Phillips, D.L., Victery, W., Fontaine, T.D. (2014). Developing a model for effects of climate change on human health and health–environment interactions: heat stress in Austin, Texas. Urban Clim. 8, 78–99. https://doi.org/10.1016/j.uclim.2014.03.001
  33. Cao, X., Onishi, A., Chen, J., & Imura, H. (2010). Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landscape and urban planning96(4), 224-231. https://doi.org/10.1016/j.landurbplan.2010.03.008
  34. Čeplová, N., Kalusová, V., & Lososová, Z. (2017). Effects of settlement size, urban heat island and habitat type on urban plant biodiversity. Landscape and Urban Planning, 159, 15-22. https://doi.org/10.1016/j.landurbplan.2016.11.004
  35. Chen, H., Deng, Q., Zhou, Z., Ren, Z., & Shan, X. (2022). Influence of land cover change on spatio-temporal distribution of urban heat island—a case in Wuhan main urban area. Sustainable Cities and Society79, 103715. https://doi.org/10.1016/j.scs.2022.103715
  36. Chuai, X., Huang, X., Wu, C., Li, J., Lu, Q., Qi, X., ... & Lu, J. (2016). Land use and ecosystems services value changes and ecological land management in coastal Jiangsu, China. Habitat International, 57, 164-174. https://doi.org/10.1016/j.habitatint.2016.07.004
  37. Conti, S., Meli, P., Minelli, G., Solimini, R., Toccaceli, V., Vichi, M., ... & Perini, L. (2005). Epidemiologic study of mortality during the Summer 2003 heat wave in Italy. Environmental research, 98(3), 390-399. https://doi.org/10.1016/j.envres.2004.10.009
  38. Cruz, J. A., Blanco, A. C., Garcia, J. J., Santos, J. A., & Moscoso, A. D. (2021). Evaluation of the cooling effect of green and blue spaces on urban microclimate through numerical simulation: A case study of Iloilo River Esplanade, Philippines. Sustainable Cities and Society, 74, 103184. https://doi.org/10.1016/j.scs.2021.103184
  39. Cuthbert, M. O., Rau, G. C., Ekström, M., O’Carroll, D. M., & Bates, A. J. (2022). Global climate-driven trade-offs between the water retention and cooling benefits of urban greening. Nature communications13(1), 518. https://doi.org/10.1038/s41467-022-28160-8
  40. Das, M., & Das, A. (2019). Dynamics of Urbanization and its impact on Urban Ecosystem Services (UESs): a study of a medium size town of West Bengal, Eastern India. J Urban Manag, 8 (3), 420–434. https://doi.org/10.1016/j.jum.2019.03.002
  41. Deilami, K., Kamruzzaman, M., & Liu, Y. (2018). Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. International journal of applied earth observation and geoinformation, 67, 30-42. https://doi.org/10.1016/j.jag.2017.12.009
  42. Demuzere, M., Orru, K., Heidrich, O., Olazabal, E., Geneletti, D., Orru, H., ... & Faehnle, M. (2014). Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. Journal of Environmental Management146, 107-115. https://doi.org/10.1016/j.jenvman.2014.07.025
  43. Deng, C., & Wu, C. (2013). Examining the impacts of urban biophysical compositions on surface urban heat island: A spectral unmixing and thermal mixing approach. Remote Sensing of Environment, 131, 262–274. https://doi.org/10.1016/j.rse.2012.12.020
  44. Depietri, Y. (2020). The social–ecological dimension of vulnerability and risk to natural hazards. Sustainability Science15(2), 587-604. https://doi.org/10.1007/s11625-019-00710-y
  45. Dobbs, C., Escobedo, F. J., & Zipperer, W. C. (2011). A framework for developing urban forest ecosystem services and goods indicators. Landscape and urban planning, 99 (3-4), 196-206. doi.org/10.1016/j.landurbplan.2010.11.004
  46. Dong, Y., Ren, Z., Fu, Y., Hu, N., Guo, Y., Jia, G., & He, X. (2022). Decrease in the residents’ accessibility of summer cooling services due to green space loss in Chinese cities. Environment International158, 107002. https://doi.org/10.1016/j.envint.2021.107002
  47. Doswald, N., & Osti, M. (2011). Ecosystem-based approaches to adaptation and mitigation: good practice examples and lessons learned in Europe, Deutschland/Bundesamt für Naturschutz.
  48. Dwivedi, A., & Mohan, B. K. (2018). Impact of green roof on micro climate to reduce Urban Heat Island. Remote Sensing Applications: Society and Environment, 10, 56-69. https://doi.org/10.1016/j.rsase.2018.01.003
  49. Farbudi, M., & Zamani, Z. (2022). Studying the solutions of urban heat island mitigation through greenery and permeable surface in Tehran. Journal of Environmental Science and Technology, 24 (2), 31-45. https://doi.org/10.30495/jest.2022.58441.5276 [In Persian].
  50. Feizizadeh, B., & Blaschke, T. (2013). Examining urban heat island relations to land use and air pollution: Multiple endmember spectral mixture analysis for thermal remote sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3), 1749-1756. https://doi.org/10.1109/JSTARS.2013.2263425
  51. Fu, P., & Weng, Q. (2016). A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sensing of Environment, 175, 205–214. https://doi.org/10.1016/j.rse.2015.12.040
  52. Gao, Z., Zaitchik, B. F., Hou, Y., & Chen, W. (2022). Toward park design optimization to mitigate the urban heat Island: Assessment of the cooling effect in five US cities. Sustainable Cities and Society81, 103870. https://doi.org/10.1016/j.scs.2022.103870
  53. García, D. H., & Díaz, J. A. (2021). Modeling of the Urban Heat Island on local climatic zones of a city using Sentinel 3 images: Urban determining factors. Urban Climate, 37, 100840. https://doi.org/10.1016/j.uclim.2021.100840
  54. Guo, S., Yang, G., Pei, T., Ma, T., Song, C., Shu, H., ... & Zhou, C. (2019). Analysis of factors affecting urban park service area in Beijing: Perspectives from multi-source geographic data. Landscape and Urban Planning, 181, 103-117. https://doi.org/10.1016/j.landurbplan.2018.09.016
  55. Heaviside, C., Vardoulakis, S., & Cai, X. M. (2016). Attribution of mortality to the urban heat island during heatwaves in the West Midlands, UK. Environmental health, 15(1), 49-59. https://doi.org/10.1186/s12940-016-0100-9
  56. Hewitt, C. N., Ashworth, K., & MacKenzie, A. R. (2020). Using green infrastructure to improve urban air quality (GI4AQ). Ambio49, 62-73. https://doi.org/10.1007/s13280-019-01164-3
  57. https:// xiaoganghe.github.io/InVEST-Cities-in-Nature/docs/Urban-Cooling/about/
  58. https://www.copernicus.eu/en/global-land-surface-albedo
  59. https://www.eia.gov/
  60. https://www.tabriz.ir/?PageID=322
  61. Hu, Y., Wang, C., & Li, J. (2023). Assessment of Heat Mitigation Services Provided by Blue and Green Spaces: An Application of the InVEST Urban Cooling Model with Scenario Analysis in Wuhan, China. Land12(5), 963.‌ https://doi.org/10.3390/land12050963
  62. Huang, C., Davis, L. S., & Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of remote sensing23(4), 725-749. https://doi.org/10.1080/01431160110040323
  63. Inostroza, L. (2014). Measuring urban ecosystem functions through ‘Technomass’ - a novel indicator to assess urban metabolism. Ecol. Indic. 42, 10–19. https://doi.org/10.1016/j.ecolind.2014.02.035
  64. Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature, 423, 528–531. https://doi.org/10.1038/nature01675
  65. Kang, P., Chen, W., Hou, Y., & Li, Y. (2019). Spatial-temporal risk assessment of urbanization impacts on ecosystem services based on pressure-status—Response framework. Scientific Reports, 9, 16806. https://doi.org/10.1038/s41598-019-52719-z
  66. Kazemi, M., Nohegar, A., & Mirdadi, M. (2017). Comparison of different classification algorithms in Landsat OLI imagery to produce land use maps (Case study: Beheshte Gomshode region). Journal of Natural Ecosystems of Iran, 8 (1), 79-97. [In Persian].
  67. Khamchiangta, D., & Dhakal, S. (2019). Physical and non-physical factors driving urban heat island: Case of Bangkok Metropolitan Administration, Thailand. Journal of environmental management, 248, 109285. https://doi.org/10.1016/j.jenvman.2019.109285
  68. Khare, V. R., Vajpai, A., & Gupta, D. (2021). A big picture of urban heat island mitigation strategies and recommendation for India. Urban Climate, 37, 100845. https://doi.org/10.1016/j.uclim.2021.100845
  69. Kindu, M., Schneider, T., Teketay, D., & Knoke, T. (2016). Changes of ecosystem service values in response to land use/land cover dynamics in Munessa–Shashemene landscape of the Ethiopian highlands. Science of The Total Environment, 547,137–147. https://doi.org/10.1016/j.scitotenv.2015.12.127
  70. Lai, D., Lian, Z., Liu, W., Guo, C., Liu, W., Liu, K., & Chen, Q. (2020). A comprehensive review of thermal comfort studies in urban open spaces. Science of the Total Environment742, 140092. https://doi.org/10.1016/j.scitotenv.2020.140092
  71. Lin, B. S., & Lin, C. T. (2016). Preliminary study of the influence of the spatial arrangement of urban parks on local temperature reduction. Urban Forestry & Urban Greening20, 348-357. https://doi.org/10.1016/j.ufug.2016.10.003
  72. Lin, J., Qiu, S., Tan, X., & Zhuang, Y. (2023). Measuring the relationship between morphological spatial pattern of green space and urban heat island using machine learning methods. Building and Environment228, 109910. https://doi.org/10.1016/j.buildenv.2022.109910
  73. Lin, W., Yu, T., Chang, X., Wu, W., & Zhang, Y. (2015). Calculating cooling extents of green parks using remote sensing: Method and test. Landscape and Urban Planning134, 66-75. https://doi.org/10.1016/j.landurbplan.2014.10.012
  74. Liu, H., Huang, B., Zhan, Q., Gao, S., Li, R., & Fan, Z. (2021). The influence of urban form on surface urban heat island and its planning implications: Evidence from 1288 urban clusters in China. Sustainable Cities and Society, 71, Article 102987. https://doi.org/10.1016/j.scs.2021.102987
  75. Macintyre, H. L., Heaviside, C., Taylor, J., Picetti, R., Symonds, P., Cai, X. M., & Vardoulakis, S. (2018). Assessing urban population vulnerability and environmental risks across an urban area during heatwaves–Implications for health protection. Science of the total environment, 610, 678-690. https://doi.org/10.1016/j.scitotenv.2017.08.062
  76. Maleki Meresht, R., Sobhani, B., & Moradi, M. (2021). Investigating the effect of heat waves On Thermal Islands In Tabriz metropolis. Journal of Geography and Environmental Hazards, 10(38), 111-128. https:// doi: 10.22067/geoeh.2021.69683.1040 [In Persian].
  77. Marando, F., Heris, M. P., Zulian, G., Udías, A., Mentaschi, L., Chrysoulakis, N., ... & Maes, J. (2022). Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustainable Cities and Society77, 103564. https://doi.org/10.1016/j.scs.2021.103564
  78. Marando, F., Salvatori, E., Sebastiani, A., Fusaro, L., & Manes, F. (2019). Regulating ecosystem services and green infrastructure: Assessment of urban heat island effect mitigation in the municipality of Rome, Italy. Ecological Modelling, 392, 92-102. https://doi.org/10.1016/j.ecolmodel.2018.11.011
  79. Martins, T. A., Adolphe, L., Bonhomme, M., Bonneaud, F., Faraut, S., Ginestet, S., ... & Guyard, W. (2016). Impact of Urban Cool Island measures on outdoor climate and pedestrian comfort: Simulations for a new district of Toulouse, France. Sustainable Cities and Society26, 9-26. https://doi.org/10.1016/j.scs.2016.05.003
  80. McPherson, E. G., Xiao, Q., & Aguaron, E. (2013). A new approach to quantify and map carbon stored, sequestered and emissions avoided by urban forests. Landscape and Urban Planning120, 70-84. https://doi.org/10.1016/j.landurbplan.2013.08.005
  81. Mirzaei, P. A., & Haghighat, F. (2010). Approaches to study urban heat island – Abilities and limitations. Building and Environment, 45(10), 2192–2201. https://doi.org/10.1016/j.buildenv.2010.04.001
  82. Mohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017). The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of Environmental Management, 197, 522–538. https://doi.org/10.1016/j.jenvman.2017.03.095
  83. Monteith, J. L. (1965). Evaporation and environment. In Symposia of the society for experimental biology (Vol. 19, pp. 205-234). Cambridge University Press (CUP) Cambridge.
  84. Mortazavi-Asl, S. K., Saeidirezvani, N., & Rezaei, M. (2022). Evaluation of the effect of particulate matter and vegetation on the formation of heat and cold islands in Tehran. Journal of spatial environmental hazards, 9(1), 97-114. https://doi.org/ 20.1001.1.24237892.1401.9.1.6.2 [In Persian].
  85. Mukherjee, F., & Singh, D. (2020). Assessing land use–land cover change and its impact on land surface temperature using LANDSAT data: A comparison of two urban areas in India. Earth Systems and Environment, 4(2), 385-407. https://doi.org/10.1007/s41748-020-00155-9
  86. Naghsh-E-Mohit Consulting Engineers. (2012). Development and Construction (Comprehensive) Plan of Tabriz City, Environmental Report of the Existing Stage, Ministry of Roads and Urban Development, General Office of Roads and Urban Development of East Azerbaijan Province. [In Persian].
  87. Namjoumanesh, J., Karegar, B., & Zivyar, P. (2022). Urban management and regeneration of green spaces and its effect on mitigation of heat islands. Political Sociology of Iran, 5(12), 2332-2352. https://doi: 10.30510/psi.2022.299994.2144 [In Persian].
  88. Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M., & Williams, N. S. (2015). Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and urban planning, 134, 127-138. https://doi.org/10.1016/j.landurbplan.2014.10.018
  89. Norton, B., Bosomworth, K., Coutts, A., Williams, N. S., Livesley, S., Trundle, A., ... & McEvoy, D. (2013). Planning for a cooler future: Green infrastructure to reduce urban heat, Victorian Centre for Climate Change Adaptation Research. https://doi.org/ 10.13140/2.1.2430.1764
  90. Nuruzzaman, M. (2015). Urban heat island: causes, effects and mitigation measures-a review. International Journal of Environmental Monitoring and Analysis, 3(2), 67-73. https://doi.org/10.11648/j.ijema.20150302.15
  91. ONU, (2018). 68% of the world population projected to live in urban areas by 2050, says UN. https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
  92. Peng, J., Dan, Y., Qiao, R., Liu, Y., Dong, J., & Wu, J. (2021). How to quantify the cooling effect of urban parks? Linking maximum and accumulation perspectives. Remote Sensing of Environment252, 112135. https://doi.org/10.1016/j.rse.2020.112135
  93. Peng, J., Liu, Q., Xu, Z., Lyu, D., Du, Y., Qiao, R., & Wu, J. (2020). How to effectively mitigate urban heat island effect? A perspective of waterbody patch size threshold. Landscape and Urban Planning202, 103873. https://doi.org/10.1016/j.landurbplan.2020.103873
  94. Penney, J. (2008). Climate change adaptation in the city of Toronto. https://policycommons.net/artifacts/1222909/climate-change-adaptation-in-the-city-of-toronto/1775986/
  95. Phelan, P. E., Kaloush, K., Miner, M., Golden, J., Phelan, B., Silva III, H., & Taylor, R. A. (2015). Urban heat island: mechanisms, implications, and possible remedies. Annual Review of Environment and Resources, 40, 285-307. https://doi.org/10.1146/annurev-environ-102014-021155
  96. Pourdeihimi,S., Tahsildoost, M., & Ameri, P. (2019). Effect of Vegetation Cover on Energy Consumption Optimization due to Reduction of Urban Heat Island intensity: Case of Tehran Metropolitan Area. journal of energy policy and planning research, 5(16), 97-122. [In Persian].
  97. Qian, W., & Li, X. (2023). A cold island connectivity and network perspective to mitigate the urban heat island effect. Sustainable Cities and Society94, 104525. https://doi.org/10.1016/j.scs.2023.104525
  98. Qiu, J., Li, X., & Qian, W. (2023). Optimizing the spatial pattern of the cold island to mitigate the urban heat island effect. Ecological Indicators154, 110550. https://doi.org/10.1016/j.ecolind.2023.110550
  99. Qiu, K., & Jia, B. (2020). The roles of landscape both inside the park and the surroundings in park cooling effect. Sustainable Cities and Society52, 101864. https://doi.org/10.1016/j.scs.2019.101864
  100. Reba, M., & Seto, K. C. (2020). A systematic review and assessment of algorithms to detect, characterize, and monitor urban land change. Remote Sensing of Environment, 242, 111739. https://doi.org/10.1016/j.rse.2020.111739
  101. Riahi Bakhtiari, H. R. (2000). Determining the most suitable method for mapping natural resources coverage on a scale of 1/25000 using satellite data in the Arjan plain area. Master's thesis, natural resources faculty, University of Tehran, Tehran. [In Persian].
  102. Richards, J. A., & Jia, X. (1999). Remote Sensing Digital Image Analysis, Springer-Verlag.
  103. Ronchi, S., Salata, S., & Arcidiacono, A. (2020). Which urban design parameters provide climate-proof cities? An application of the Urban Cooling InVEST Model in the city of Milan comparing historical planning morphologies. Sustainable Cities and Society, 63, 102459. https://doi.org/10.1016/j.scs.2020.102459
  104. Rozos, E., Makropoulos, C., & Maksimović, Č. (2013). Rethinking urban areas: an example of an integrated blue-green approach. Water Science and Technology: Water Supply, 13(6), 1534-1542. https://doi.org/10.2166/ws.2013.140
  105. Salvati, L., Zambon, I., Chelli, F. M., & Serra, P. (2018). Do spatial patterns of urbanization and land consumption reflect different socioeconomic contexts in Europe?. Science of the Total Environment, 625, 722-730. https://doi.org/10.1016/j.scitotenv.2017.12.341
  106. Santamouris, M. (2013). Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renewable and Sustainable Energy Reviews, 26, 224–240. https://doi.org/10.1016/j.rser.2013.05.047
  107. Santamouris, M. (2014). Cooling the cities – A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy, 103, 682–703. https://doi.org/10.1016/j.solener.2012.07.003
  108. Santamouris, M. (2015). Regulating the damaged thermostat of the cities—Status, impacts and mitigation challenges. Energy and Buildings, 91, 43–56. https://doi.org/10.1016/j.enbuild.2015.01.027
  109. Santamouris, M. (2020). Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy and Buildings, 207, 109482. https://doi.org/10.1016/j.enbuild.2019.109482
  110. Santamouris, M., Cartalis, C., Synnefa, A., & Kolokotsa, D. (2015). On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy and buildings98, 119-124. https://doi.org/10.1016/j.enbuild.2014.09.052
  111. Sarooei, S. (1999). Investigating the possibility of forest classification in terms of density in Zagros forests using satellite data. Master thesis, Faculty of natural resources, University of Tehran, Tehran. [In Persian].
  112. Sarrat, C., Lemonsu, A., Masson, V., & Guédalia, D. (2006). Impact of urban heat island on regional atmospheric pollution. Atmospheric environment, 40(10), 1743-1758. https://doi.org/10.1016/j.atmosenv.2005.11.037
  113. Schneider, A., Friedl, M. A., & Potere, D. (2010). Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote sensing of environment, 114(8), 1733-1746. https://doi.org/10.1016/j.rse.2010.03.003
  114. Sebastiani, A., Marando, F., & Manes, F. (2021). Mismatch of regulating ecosystem services for sustainable urban planning: PM10 removal and urban heat island effect mitigation in the municipality of Rome (Italy). Urban Forestry & Urban Greening, 57, 126938. https://doi.org/10.1016/j.ufug.2020.126938
  115. Seto, K. C., Güneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences109(40), 16083-16088. https://doi.org/10.1073/pnas.1211658109
  116. Sharma, R., Ghosh, A., & Joshi, P. K. (2013). Spatio-temporal footprints of urbanisation in Surat, the Diamond City of India (1990–2009). Environmental monitoring and assessment, 185(4), https://doi.org/3313-3325. 10.1007/s10661-012-2792-9
  117. Sharma, S., Nahid, S., Sharma, M., Sannigrahi, S., Anees, M. M., Sharma, R., Shekhar, R., Basu, A. S., Pilla, F., Basu, B., & Joshi, P. K. (2020). A long-term and comprehensive assessment of urbanization-induced impacts on ecosystem services in the capital city of India. City and Environment Interactions, 7, Article 100047. https://doi.org/10.1016/j.cacint.2020.100047
  118. Tabeyi, N., Babaee Aghdam, F., & Hakimi, H. (2022). Inclusive city; A new approach in urban planning A case study the Tabriz city. Journal of Geographical Urban Planning Research, 10 (2), 115-132. https://doi.org/ 10.22059/JURBANGEO.2022.335543.1627 [In Persian].
  119. Taha, H. (1997). Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy and buildings, 25(2), 99-103. https://doi.org/10.1016/S0378-7788(96)00999-1
  120. Tratalos, J., Fuller, R. A., Warren, P. H., Davies, R. G., & Gaston, K. J. (2007). Urban form, biodiversity potential and ecosystem services. Landscape and urban planning83(4), 308-317. https://doi.org/10.1016/j.landurbplan.2007.05.003
  121. Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A., Niemela, J., & James, P. (2007). Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landscape and urban planning81(3), 167-178. https://doi.org/10.1016/j.landurbplan.2007.02.001
  122. Ulpiani, G. (2021). On the linkage between urban heat island and urban pollution island:Three-decade literature review towards a conceptual framework. The Science of the Total Environment, 751, 1–31. https://doi.org/10.1016/j.scitotenv.2020.141727
  123. Vaz Monteiro, M., Doick, K. J., Handley, P., & Peace, A. (2016). The impact of greenspace size on the extent of local nocturnal air temperature cooling in London. Urban Forestry and Urban Greening, 16, 160–169. https://doi.org/10.1016/j.ufug.2016.02.008
  124. Vice President of Planning and Development of Human Capital of Tabriz Municipality. (2022). Statistical yearbook of Tabriz city and municipality (year 2020), Tabriz: Vice President of Planning and Development of Human Capital of Tabriz Municipality, Program and Budget Department, Group of Statistics and Information Analysis, First Edition. [In Persian].
  125. Villanueva-Solis, J., Ranfla, A., & Quintanilla-Montoya, A. L. (2013). Isla de calor urbana: modelación dinámica y evaluación de medidas de mitigación en ciudades de clima árido extremo. Información tecnológica24(1), 15-24. https://doi.org/10.4067/S0718-07642013000100003
  126. Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384. https://doi.org/10.1016/S0034-4257(03)00079-8
  127. Wang, C., Ren, Z., Chang, X., Wang, G., Hong, X., Dong, Y., ... & Wang, W. (2023). Understanding the cooling capacity and its potential drivers in urban forests at the single tree and cluster scales. Sustainable Cities and Society93, 104531. https://doi.org/10.1016/j.scs.2023.104531
  128. Wang, C., Ren, Z., Dong, Y., Zhang, P., Guo, Y., Wang, W., & Bao, G. (2022). Efficient cooling of cities at global scale using urban green space to mitigate urban heat island effects in different climatic regions. Urban Forestry & Urban Greening74, 127635. https://doi.org/10.1016/j.ufug.2022.127635
  129. Wang, Z., Meng, Q., Allam, M., Hu, D., Zhang, L., & Menenti, M. (2021). Environmental and anthropogenic drivers of surface urban heat island intensity: A case-study in the Yangtze River Delta, China. Ecological Indicators, 128, Article 107845. https://doi.org/10.1016/j.ecolind.2021.107845
  130. Wu, Z., & Chen, L. (2017). Optimizing the spatial arrangement of trees in residential neighborhoods for better cooling effects: Integrating modeling with in-situ measurements. Landscape and Urban Planning167, 463-472. https://doi.org/10.1016/j.landurbplan.2017.07.015
  131. Xie, M., Gao, Y., Cao, Y., Breuste, J., Fu, M., & Tong, D. (2015). Dynamics and temperature regulation function of urban green connectivity. Journal of Urban Planning and Development141(3), A5014008. https://doi.org/10.1061/(ASCE)UP.1943-5444.0000266
  132. Yang, C., Yan, F., & Zhang, S. (2020). Comparison of land surface and air temperatures for quantifying summer and winter urban heat island in a snow climate city. Journal of environmental management, 265, 110563. https://doi.org/10.1016/j.jenvman.2020.110563
  133. Yin, C., Yuan, M., Lu, Y., Huang, Y., & Liu, Y. (2018). Effects of urban form on the urban heat island effect based on spatial regression model. Science of The Total Environment, 634, 696–704. https://doi.org/10.1016/j.scitotenv.2018.03.350
  134. Zeynali Azim, A., Hatami Golzari, E., Karami, I., & Babazadeh Oskoui, S. (2021). Measuring the Environmental Sustainability of Tabriz City Based on Environmental Indicators of Smart Urban Growth. Journal of Sustainability, Development & Environment, 2 (3), 41-59. [In Persian].
  135. Zhao, L., Lee, X., Smith, R. B., & Oleson, K. (2014). Strong contributions of local background climate to urban heat islands. Nature, 511, 216–219. https://doi.org/10.1038/nature13462
  136. Zubeyri, M., & Majd, A. R. (1999). Familiarity with remote sensing technology and its application in natural resources, Second Edition, Tehran: Tehran University Press, Publishing and Printing Institute. [In Persian].